Skip to main content
Log in

In Situ SAXS Study on the Structure Evolution of SnO2/Graphene Nanocomposite Anode Materials during the Discharges

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

With the increasing energy demands for electronic devices and electrical vehicles, anode materials for lithium ion batteries (LIBs) with high specific capacity, good cyclic and rate performances become one of the focal areas of research. SnO2 has been studied as a promising anode material for LIBs due to its high theoretical capacity. However, the large volume expansion and severe structural collapse during cycles are serious. SnO2/graphene composite is fabricated as LIBs anode material and systematically investigated by XRD, SEM, XPS, and SAXS. The nanostructural evolutions of SnO2 nanoparticles and SnO2/graphene nanocomposite as anode materials are studied during the first and the tenth discharges by in situ electrochemical-SAXS technique. During the first to the tenth discharges, the SnO2 nanospheres tended to pulverize after expanding. The SnO2/graphene composite also expanded after discharge, but it didn’t pulverize immediately after the tenth discharge. SAXS results also demonstrated that the multihierarchical scatterers in the anode materials can be roughly divided into gap, interspace, SnO2 nanoparticles, nanopores and so on. These results suggested that this composite structure can buffer large volume changes and effectively prevent the detachment and pulverization of SnO2 during the lithiation and delithiation processes. This research is of great significance for exploring energy storage materials for LIBs with higher stable cycling performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 8.
Fig. 9.
Fig. 9.

REFERENCES

  1. Zhao, S., Li, M., Wu, X., Yu, S., Zhang, W., Luo, J., Wang, J., Geng, Y., Gou, Q., and Xun, K., Graphene-based free-standing bendable films: designs, fabrications, and applications, Mater. Today Adv., 2020, vol. 6, p. 100060.

    Article  Google Scholar 

  2. Deng, Y., Fang, C., and Chen, G., The developments of SnO2/graphene nanocomposites as anode materials for high performance lithium ion batteries: a review, J. Power Sources, 2016, vol. 304, p. 81.

    Article  CAS  Google Scholar 

  3. Stenina, I.A., Kulova, T.L., Desyatov, A.V., and Yaroslavtsev, A.B., Composites based on lithium titanate with carbon nanomaterials as anodes for lithium-ion batteries, Russ. J. Electrochem., 2022, vol. 58, p. 658.

    Article  CAS  Google Scholar 

  4. Wang, X., Zhou, X., Yao, K., Zhang, J., and Liu, Z., A SnO2/graphene composite as a high stability electrode for lithium ion batteries, Carbon, 2011, vol. 49, p. 133.

    Article  CAS  Google Scholar 

  5. Obrovac, M.N., Alloy negative electrodes for Li-ion batteries, Chem. Rev., 2014, vol. 114, p. 11444.

    Article  CAS  PubMed  Google Scholar 

  6. Park, C.M., Kim, J.H., Kim, H., and Sohn, H.J., Li-alloy based anode materials for Li secondary batteries, Chem. Soc. Rev., 2010, vol. 39, p. 3115.

    Article  CAS  PubMed  Google Scholar 

  7. Goodenough, J.B. and Park, K.S., The Li-ion rechargeable battery: a perspective, J. Am. Chem. Soc., 2013, vol. 135, p. 1167.

    Article  CAS  PubMed  Google Scholar 

  8. Yang, H., Hou, Z., Zhou, N., He, B., Cao, J., and Kuang, Y., Graphene-encapsulated SnO2 hollow spheres as high-performance anode materials for lithium ion batteries, Ceram. Int., 2014, vol. 40, p. 13903.

    Article  CAS  Google Scholar 

  9. Wang, X., Liu, X., Liu, Y., Jia, H., Gu, X., Li, S., Zhang, X., Xing, X., Wu, Z., and Cheng, W., The study on nanostructural evolution of SnO2-carbon aerogel nanocomposite during the first discharge process, J. Phys. Chem. Solids, 2021, vol. 154, p. 110052.

    Article  CAS  Google Scholar 

  10. Wang, Y., Lee, J., and Zeng, H., Polycrystalline SnO2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application, Chem. Mater., 2005, vol. 17, p. 3899.

    Article  CAS  Google Scholar 

  11. Deng, D. and Lee, J., Hollow core-shell mesospheres of crystalline SnO2 nanoparticle aggregates for high capacity Li+ ion storage, Chem. Mater., 2008, vol. 20, p. 1841.

    Article  CAS  Google Scholar 

  12. Lou, X., Chen, J., Chen, P., and Archer, L.A., One-pot synthesis of carbon-coated SnO2 nanocolloids with improved reversible lithium storage properties, Chem. Mater., 2009, vol. 21, p. 2868.

    Article  CAS  Google Scholar 

  13. Yang, R., Zhao, W., Zheng, J., Zhang, X., and Li, X., One-step synthesis of carbon-coated tin dioxide nanoparticles for high lithium storage, J. Phys. Chem., 2010, vol. 114, p. 20272.

    CAS  Google Scholar 

  14. Lian, P., Zhu, X., Liang, S., Li, Z., Yang, W., and Wang, H., High reversible capacity of SnO2/graphene nanocomposite as an anode material for lithium-ion batteries, Electrochim. Acta, 2011, vol. 56, p. 4532.

    Article  CAS  Google Scholar 

  15. Gao, M., Chen, X., Pan, H., Xiang, L., Wu, F., and Liu, Y., Ultrafine SnO2 dispersed carbon matrix composites derived by a sol-gel method as anode materials for lithium ion batteries, Electrochim. Acta, 2010, vol. 55, p. 9067.

    Article  CAS  Google Scholar 

  16. Zhang, R., Fu, Q., Gao, P., Zhou, W., Liu, H., Xu, C., Wu, J., Tu, C., and Liu, J., Transition metal carbonate anodes for Li-ion battery: fundamentals, synthesis and modification, J. Energy Chem., 2022, vol. 70, p. 95.

    Article  CAS  Google Scholar 

  17. Li, L., Huang, F., Deng, J., Liu, P., Wang, F., Yao, Q., Wang, Z., Zhou, H., and Deng, J., Realizing remarkable sodium storage performance of a Sn-based anode material with an oxide-alloy intergrowth structure, Rare Met., 2022, vol. 41, p. 1512.

    Article  CAS  Google Scholar 

  18. Zhou, J., Song, H., Ma, L., and Chen, X., Magnetite/graphene nanosheet composites: interfacial interaction and its impact on the durable high-rate performance in lithium-ion batteries, RSC Adv., 2011, vol. 1, p. 782.

    Article  CAS  Google Scholar 

  19. Lai, H., Feng, B., Jiang, Y., Shi, N., Liang, C., Chang, S., Guo, S., Cui, B., and Cao, H., Fabrication of graphene supported SnO2 nanoparticles and their sodium storage properties, Mater. Lett., 2016, vol. 166, p. 292.

    Article  CAS  Google Scholar 

  20. Cheng, W., Wu, Z., Gu, X., Lin, F., Xing, X., Mo, G., and Wu, Z., GISAXS study on the size and distribution evolutions of Ag nanoparticles in ion-exchange glass during annealing, Mater. Chem. Phys., 2015, vol. 152, p. 48.

    Article  CAS  Google Scholar 

  21. Cheng, W., Xing, X., Wang, D., Zhang, K., Cai, Q., Mo, G., Chen, Z., and Wu, Z., Small-angle X-ray scattering study on nanostructural changes with water content in red pine, American pine, and white ash, J. Wood Sci., 2011, vol. 57, p. 470.

    Article  Google Scholar 

  22. Wang, W., Chen, X., Cai, Q., Mo, G., Jiang, L., Zhang, K., Chen, Z., Wu, Z., and Pan, W., In situ SAXS study on size changes of platinum nanoparticles with temperature, Eur. Phys. J. B, 2008, vol. 65, p. 57.

    Article  CAS  Google Scholar 

  23. Nguyen, T.K.L., Phan, T.N.T., Cousin, F., Devaux, D., Mehan, S., Ziarelli, F., Viel S., Gigmes, D., Soudant, P., and Bouchet, R., Polyhedral oligomeric silsesquioxane-based macroanions to level up the Li+ transport number of electrolytes for lithium batteries, Chem. Mater., 2022, vol. 34, p. 6944.

    Article  CAS  Google Scholar 

  24. Philipp, S., Christian, S., Gudrun, R., and Jan, S., Machine learning in the development of Si-based anodes using small-angle X-ray scattering for structural property analysis, Comput. Mater. Sci., 2023, vol. 218, p. 111984.

    Article  Google Scholar 

  25. Liu, Y., Sheng, W., and Wu, Z., Synchrotron radiation and its applications progress in inorganic materials, J. Inorg. Mater., 2021, vol. 36, p. 901.

    Article  Google Scholar 

  26. Yao, J., Shen, X., Wang, B., Liu, H., and Wang, G., In situ chemical synthesis of SnO2/graphene nanocomposite as anode materials for lithium-ion batteries, Electrochem. Commun., 2009, vol. 11, p. 1849.

    Article  CAS  Google Scholar 

  27. Zhang, L., Jiang, L., Yan, H., Wang, W., Wang, W., Song, W., Guo, Y., and Wan, L., Mono dispersed SnO2 nanoparticles on both sides of single layer graphene sheets as anode materials in Li-ion batteries, J. Mater. Chem., 2010, vol. 20, p. 5462.

    Article  CAS  Google Scholar 

  28. Lu, Z., Kong, Z., Jing, L., Wang, T., Liu, X., Fu, A., Guo, P., Guo, Y., and Li, H., Porous SnO2/graphene composites as anode materials for lithium-ion batteries: morphology control and performance improvement, Energy Fuels, 2020, vol. 34, p. 13126.

    Article  CAS  Google Scholar 

  29. Wang, Y., Hou, B., Guo, J., Ning, Q., Pang, W., Wang, J., Lv, C., and Wu, X., An ultralong lifespan and low-temperature workable sodium-ion full battery for stationary energy storage, Adv. Energy Mater., 2018, vol. 8, p. 1703252.

    Article  Google Scholar 

  30. Gu, Z., Guo, J., Sun, Z., Zhao, X., Li, W., Yang, X., Liang, H., Zhao, C., and Wu, X., Carbon-coating-increased working voltage and energy density towards an advanced Na3V2(PO4)2F3@C cathode in sodium-ion batteries, Sci. Bull., 2020, vol. 65, p. 702.

    Article  CAS  Google Scholar 

  31. Liu, D., Liu, D., Hou, B., et al., 1D porous MnO@ N-doped carbon nanotubes with improved Li-storage properties as advanced anode material for lithium-ion batteries, Electrochim. Acta, 2018, vol. 264, p. 292.

    Article  CAS  Google Scholar 

  32. Chen, S., Shu, X., Wang, H., and Zhang, J., Thermally driven phase transition of manganese oxide on carbon cloth for enhancing the performance of flexible all-solid-state zinc-air batteries, J. Mater. Chem., 2019, vol. 7, p. 19719.

    Article  CAS  Google Scholar 

  33. Hammersley, A.P., FIT2D: a multi-purpose data reduction, analysis and visualization program, J. Appl. Crystallogr., 2016, vol. 49, p. 646.

    Article  CAS  Google Scholar 

  34. Wang, W., Chen, X., Cai, Q., Mo, G., Jiang, L., Zhang, K., Chen, Z., Wu, Z., and Pan, W., In situ SAXS study on size changes of platinum nanoparticles with temperature, Eur. Phys. J. B, 2008, vol. 65, p. 57.

    Article  CAS  Google Scholar 

  35. Chattopadhyay, S., Lipson, A.L., Karmel, H.J., Emery, J.D., Fister, T.T., Fenter, P.A., Hersam, M.C., and Bedzyk, M.J., In situ X-ray study of the solid electrolyte interphase (SEI) formation on graphene as a model Li-ion battery anode, Chem. Mater., 2012, vol. 24, p. 3038.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was carried out with the support of 1W2A beamline at Beijing Synchrotron Radiation Facility.

Funding

This work is supported by the Nature Science Foundation of Heilongjiang Province (no. LH2019A025), Basic scientific research project of colleges and universities in Heilongjiang Province (no. 135509215) and supported by the College Students Innovation and Entrepreneurship Training Program of Heilongjiang Province (no. 202110232085).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaojun Wu or Weidong Cheng.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fengyu Lv, Wang, X., Liu, Y. et al. In Situ SAXS Study on the Structure Evolution of SnO2/Graphene Nanocomposite Anode Materials during the Discharges. Russ J Electrochem 59, 1206–1220 (2023). https://doi.org/10.1134/S1023193524020095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193524020095

Keywords:

Navigation