Skip to main content
Log in

The Effect of the Method of Formation of Pr2CuO4-Based Cathodes on the Electrochemical Characteristics of Planar Electrolyte-Supported SOFCs

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The studies of how the method of organization of the microstructure of Pr2CuO4-based (РСО) cathodes affects the electrochemical characteristics of model electrolyte-supported solid oxide fuel cells (SOFCs) are carried out. It is shown that the higher thickness of the PCO cathode layer and the introduction of a pore-forming agent increase the power density of tested SOFCs as compared with the cathodes of the unmodified structure with the power density of 34 mW/cm2 at 850°С. The optimal thickness of the cathode layer corresponding to the maximum electrochemical performance is found to lie in the interval of 40–50 µm, which allows the power density of 116 mW/cm2 at 850°С to be reached. At the same time, with the transition from single-phase PCO cathodes to the composite PCO–Ce0.9Gd0.1O1.95 (60/40 wt %) cathodes the power density increases to 130 mW/cm2 at 850°С and the dynamics of its decrease with the decrease in temperature slows down. The analysis of impedance spectroscopy data on the total polarization resistance of model SOFCs with cathodes prepared by different methods shows that the transition from unmodified cells to cells with the thicker cathodic layer and also with composite cathodes decreases the level of polarization losses two-fold (in the former case) and three-fold (in the latter case). This is accompanied by the increase in the power density. The proposed methods of modifying the microstructure of the PCO-based cathode demonstrate the positive dynamics of growth of both the electrochemical performance of the cathode/electrolyte interface and the power density characteristics of the fuel cell as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Silva, F.S. and Souza, T.M., Novel materials for solid oxide fuel cell technologies: A literature review, Int. J. Hydrogen Energy, 2019, vol. 42, p. 26020.

    Article  Google Scholar 

  2. Vostakola, M.F. and Horri, B.A., Progress in material development for low-temperature solid oxide fuel cells: a review, Energies, 2021, vol. 14, no. 5, p. 1280.

    Article  CAS  Google Scholar 

  3. Istomin, S.Ya., Lyskov, N.V., Mazo, G.N., and Antipov, E.V., Electrode materials based on complex d‑metal oxides for symmetrical solid oxide fuel cells, Russ. Chem. Rev., 2021, vol. 90, no. 6, p. 644.

    Article  Google Scholar 

  4. Gao, Z., Mogni, L.V., Miller, E.C., Railsback, J.G., and Barnett, S.A., A perspective on low-temperature solid oxide fuel cells, Energy Environ. Sci., 2016, vol. 9, p. 1602.

    Article  CAS  Google Scholar 

  5. Jiang, S.P., Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review, J. Mater. Sci., 2008, vol. 43, p. 6799.

    Article  CAS  Google Scholar 

  6. Jacobson, A.J., Materials for solid oxide fuel cells, Chem. Mater., 2009, vol. 22, p. 660.

    Article  Google Scholar 

  7. Molenda, J., Świerczek, K., and Zając, W., Functional materials for the IT-SOFC, J. Power Sources, 2007, vol. 173, p. 657.

    Article  CAS  Google Scholar 

  8. Brett, D.J.L., Atkinson, A., Brandon, N.P., and Skinner, S.J., Intermediate temperature solid oxide fuel cells, Chem. Soc. Rev., 2008, vol. 37, p. 1568.

    Article  CAS  PubMed  Google Scholar 

  9. Ullmann, H., Trofimenko, N., Tietz, F., Stöver, D., and Ahmad-Khanlou, A., Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes, Solid State Ionics, 2000, vol. 138, p. 79.

    Article  CAS  Google Scholar 

  10. Sadykov, V.A., Sadovskaya, E.M., Eremeev, N.F., Skriabin, P.I., Krasnov, A.V., Bespalko, Y.N., Pavlova, S.N., Fedorova, Yu.E., Pikalova, E.Yu., and Shlyakhtina, A.V., Oxygen mobility in the materials for solid oxide fuel cells and catalytic membranes (review), Russ. J. Electrochem., 2019, vol. 55, p. 701.

    Article  CAS  Google Scholar 

  11. Tsvinkinberg, V.A., Tolkacheva, A.S., Filonova, E.A., Gyrdasova, O.I., Pikalov, S.M., Vorotnikov, V.A., Vylkov, A.I., Moskalenko, N.I., and Pikalova, E.Yu., Structure, thermal expansion and electrical conductivity of La2 – xGdxNiO4 + δ (0.0≤ x ≤ 0.6) cathode materials for SOFC applications, J. Alloys Compd., 2021, vol. 853, p. 156728.

    Article  CAS  Google Scholar 

  12. Pikalova, E.Yu., Kolchugin, A.A., Sadykov, V.A., Sadovskaya, E.M., Filonova, E.A., Eremeev, N.F., and Bogdanovich, N.M., Structure, transport properties and electrochemical behavior of the layered lanthanide nickelates doped with calcium, Int. J. Hydrogen Energy, 2018, vol. 43, iss. 36, p. 17373.

    Article  CAS  Google Scholar 

  13. Koval’chuk, A.N., Kuz’min, A.V., Osinkin, D.A., Farlenkov, A.S., Solov’ev, A.A., Shipilova, A.V., Ionov, I.V., Bogdanovich, N.M., and Beresnev, S.M., Single SOFC with supporting Ni-YSZ anode, bilayer YSZ/GDC film electrolyte, and La2NiO4 + δ cathode, Russ. J. Electrochem., 2018, vol. 54, p. 541.]

    Article  Google Scholar 

  14. Philippeau, B., Mauvy, F., Mazataud, C., Fourcade, S., and Grenier, J.C., Comparative study of electrochemical properties of mixed conducting Ln2NiO4+δ (Ln = La, Pr and Nd) and La0.6Sr0.4Fe0.8Co0.2O3 − δ as SOFC cathodes associated to Ce0.9Gd0.1O2 − δ, La0.8Sr0.2Ga0.8Mg0.2O3 − δ and La9Sr1Si6O26.5 electrolytes, Solid State Ionics, 2013, vol. 249, p. 17.

    Article  Google Scholar 

  15. Kaluzhskikh, M.S., Kazakov, S.M., Mazo, G.N., Istomin, S.Ya., Antipov, E.V., Gippius, A.A., Fedotov, Yu., Bredikhin, S.I., Liu, Y., Svensson, G., and Shen, Z., High-temperature crystal structure and transport properties of the layered cuprates Ln2CuO4, Ln = Pr, Nd and Sm, J. Solid State Chem., 2011, vol. 184, p. 698.

    Article  CAS  Google Scholar 

  16. Lyskov, N.V., Kaluzhskikh, M.S., Leonova, L.S., Mazo, G.N., Istomin, S.Ya., and Antipov, E.V., Electrochemical characterization of Pr2CuO4 cathode for IT-SOFC, Int. J. Hydrogen Energy, 2012, vol. 37, № 29, p. 18357.

    Article  CAS  Google Scholar 

  17. Lyskov, N.V., Mazo, G.N., Leonova, L.S., Kolchina, L.M., Istomin, S.Ya., and Antipov, E.V., The effect of temperature and oxygen partial pressure on the reduction mechanism in the Pr2CuO4/Ce0.9Gd0.1O1.95 system, Russ. J. Electrochem., 2013, vol. 49, p. 747.

    Article  CAS  Google Scholar 

  18. Zheng, K., Gorzkowska-Sobaś, A., and Świerczek, K., Evaluation of Ln2CuO4 (Ln: La, Pr, Nd) oxides as cathode materials for IT-SOFC, Mater. Res. Bull., 2012, vol. 47, p. 4089.

    Article  CAS  Google Scholar 

  19. Kolchina, L.M., Lyskov, N.V., Kuznetsov, A.N., Kazakov, S.M., Galin, M.Z., Meledin, A., Abakumov, A.M., Bredikhin, S.I., Mazo, G.N., and Antipov, E.V., Evaluation of Ce-doped Pr2CuO4 for potential application as a cathode material for solid oxide fuel cells, RSC Adv., 2016, vol. 6, p. 101029.

    Article  CAS  Google Scholar 

  20. Zhao, T., Sun, L.-P., Li, Q., Huo, L.-H., Zhao, H., Bassat, J.-M., Rougier, A., Fourcade, S., and Grenier, J.-C., Electrochemical property assessment of Pr2CuO4 submicrofiber cathode for intermediate-temperature solid oxide fuel cells, J. Electrochem. Energy Convers. Storage, 2016, vol. 13, p. 01106-1.

    Article  Google Scholar 

  21. Khandale, A.P., Pahune, B.S., Bhoga, S.S., Kumar, R.V., and Tomov, R., Development of Pr2 – xSrxCuO4 ± δ mixed ion-electron conducting system as cathode for intermediate temperature solid oxide fuel cell, Int. J. Hydrogen Energy, 2019, vol. 44, № 29, p. 15417.

    Article  CAS  Google Scholar 

  22. Bredikhin, S.I., Agarkov, D.A., Aronin, A.S., Burmistrov, I.N., Matveev, D.V., and Kharton, V.V., Ion transfer in Ni-containing composite anodes of solid oxide fuel cells: A microstructural study, Mater. Lett., 2018, vol. 216, p. 193.

    Article  CAS  Google Scholar 

  23. Kolchina, L.M., Lyskov, N.V., Petukhov, D.I., and Mazo, G.N., Electrochemical characterization of Pr2CuO4–Ce0.9Gd0.1O1.95 composite cathodes for solid oxide fuel cells, J. Alloys Compd., 2014, vol. 605, p. 89.

    Article  CAS  Google Scholar 

  24. Krylov, O.V., Carbon-dioxide conversion of methane in syngas, Ross. Khim. Zh., 2000, vol. 44, no. 1, p. 19.

    CAS  Google Scholar 

  25. Kharton, V.V., Viskup, A.P., Kovalevsky, A.V., Naumovich, E.N., and Marques, F.M.B., Ionic transport in oxygen-hyperstoichiometric phases with K2NiF4-type structure, Solid State Ionics, 2001, vol. 143, p. 337.

    Article  CAS  Google Scholar 

  26. Niea, L., Liua, J., Zhang, Y., and Liu, M., Effects of pore formers on microstructure and performance of cathode membranes for solid oxide fuel cells, J. Power Sources, 2011, vol. 196, p. 9975.

    Article  Google Scholar 

  27. Burmistrov, I.N., Agarkov, D.A., Tsybrov, F.M., and Bredikhin, S.I., Preparation of membrane-electrode assemblies of solid oxide fuel cells by co-sintering of electrodes, Russ. J. Electrochem., 2016, vol. 52, p. 669.

    Article  CAS  Google Scholar 

  28. Shipilova, A.V., Solov’ev, A.A., Smolyanskii, E.A., Rabotkin, S.V., and Ionov, I.V., The effect of thin functional electrode layers on characteristics of intermediate temperature solid oxide fuel cell, Russ. J. Electrochem., 2021, vol. 57, p. 97.

    Article  CAS  Google Scholar 

  29. Chen, X.J., Chan, S.H., and Khor, K.A., Simulation of a composite cathode in solid oxide fuel cells, Electrochim. Acta, 2004, vol. 49, p. 1851.

    Article  CAS  Google Scholar 

  30. Tanner, C.W., Fung, K.-Z., and Virkar, A.V., The effect of porous composite electrode structure on solid oxide fuel cell performance, J. Electrochem. Soc., 1997, vol. 144, no. 1, p. 21.

    Article  CAS  Google Scholar 

  31. Kenjo, T., Osawa, S., and Fujikawa, K., High temperature air cathodes containing ion conductive oxides, J. Electrochem. Soc., 1991, vol. 138, no. 2, p. 349.

    Article  CAS  Google Scholar 

  32. Sasaki, K., Wurth, J.P., Gschwend, R., Gödickemeier, M., and Gauckler, L.J., Microstructure-property relations of solid oxide fuel cell cathodes and current collectors, J. Electrochem. Soc., 1996, vol. 143, no. 2, p. 530.

    Article  CAS  Google Scholar 

  33. Murray, E.P., Tsai, T., and Barnett, S.A., Oxygen transfer processes in (La,Sr)MnO3/Y2O3-stabilized ZrO2 cathodes: an impedance spectroscopy study, Solid State Ionics, 1998, vol. 110, p. 235.

    Article  CAS  Google Scholar 

  34. Li, H., Cai, Z., Li, Q., Sun, C., and Zhao, H., Electrochemical investigation of Pr2CuO4-based composite cathode for intermediate-temperature solid oxide fuel cells, J. Alloys Compd., 2016, vol. 688, p. 972.

    Article  CAS  Google Scholar 

  35. Lyskov, N.V., Kolchina, L.M., Galin, M.Z., and Mazo, G.N., Optimization of composite cathode based on praseodymium cuprate for intermediate-temperature solid oxide fuel cells, Russ. J. Electrochem., 2015, vol. 51, p. 450.

    Article  CAS  Google Scholar 

  36. Murray, E.P. and Barnett, S.A., (La,Sr)MnO3–(Ce,Gd)O2 – x composite cathodes for solid oxide fuel cells, Solid State Ionics, 2001, vol. 143, p. 265.

    Article  Google Scholar 

Download references

Funding

N.V. Lyskov is grateful to the Project of the Scientific-Educational Group of the Research University Higher School of Economics no. 23-00-001 for the financial support. The materials were synthesized within the frames of the State Project for the Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences (State Registration no. АААА-А19-119061890019-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Mazo.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by T. Safonova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobrovol’skii, Y.O., Lyskov, N.V. & Mazo, G.N. The Effect of the Method of Formation of Pr2CuO4-Based Cathodes on the Electrochemical Characteristics of Planar Electrolyte-Supported SOFCs. Russ J Electrochem 59, 1080–1091 (2023). https://doi.org/10.1134/S1023193523120042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523120042

Keywords:

Navigation