Skip to main content
Log in

Proton and Oxygen-Ion Conductivity of the Pure and Lanthanide-Doped Hafnates with Pyrochlore Structure

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, a high-density ceramics Ln2Hf2O7 (Ln = La, Nd, Sm, Eu, Gd) were synthesized by mechanical activation followed by high-temperature synthesis at 1600°C (3–10 h) and their transport properties were compared with those of Ln2.1Hf1.9O6.95 (Ln = La, Nd, Sm, Eu) doped solid solutions. The total conductivity of ceramics was studied using impedance spectroscopy and dc four-probe method; for Ln2Hf2O7 (Ln = Sm, Eu), by determining the total conductivity as a function of oxygen partial pressure. The maximum oxygen-ion conductivity was observed for Gd2Hf2O7 (~1 × 10–3 S/cm at 700°C); it was shown to approach the conductivity of Gd2Zr2O7 (~2 × 10–3 S/cm at 700°C) for the first time. Thus, the gadolinium hafnate can be a promising material for further doping in order to obtain highly conductive electrolytes. Among pure rare-earth hafnates, the proton conductivity was reliably observed for Nd2Hf2O7 only; however, ac measurements detected low-temperature proton conductivity in the Gd2Hf2O7 up to 450°С as well. With a decrease in the lanthanide ionic radius, the oxygen-ion conductivity increased in the Ln2Hf2O7 (Ln = La, Nd, Sm, Gd) series. Although the conductivity of samarium hafnate is an order of magnitude lower than that of Gd2Hf2O7, it has a wide range of oxygen-ion conductivity (~10–18–1 atm at 700, 800°C); there is no contribution from hole conductivity in air, in contrast to Eu2Hf2O7. Among doped Ln2.1Hf1.9O6.95 pyrochlore solid solutions (Ln = La, Nd, Sm, Eu), the proton conductivity of ~8 × 10−5 S/cm at 700°C was shown in Ln2.1Hf1.9O6.95 (Ln = La, Nd). With a decrease in the lanthanide ionic radius, the proton conductivity disappeared; the oxygen-ion one, increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Diaz-Guillen, J.A., Fuentes, A.F., Díaz-Guillen, M.R., Almanza, J.M., Santamarıa, J., and Leon, C., The effect of homovalent A-site substitutions on the ionic conductivity of pyrochlore-type Gd2Zr2O7, J. Power Sources, 2009, vol. 186, no. 2, p. 349.

    Article  CAS  Google Scholar 

  2. Yamamura, H., Nishino, H., Kakinuma, K., and Nomura, K., Electrical conductivity anomaly around fluorite-pyrochlore phase boundary, Solid State Ionics, 2003, vol. 158, p. 359.

    Article  CAS  Google Scholar 

  3. Vassen, R., Cao, X., Tietz, F., Basu, D., and Stover, D., Zirconates as new materials for thermal barrier coatings, J. Amer. Ceram. Soc., 2000, vol. 83, p. 2023.

    Article  CAS  Google Scholar 

  4. Lopez-Cota, F.A., Cepeda-Sanchez, N.M., Díaz-Guillen, J.A., Dura, O.J., Lopez de la Torre, M.A., Maczka, M., Ptak, M., and Fuentes, A.F., Electrical and thermophysical properties of mechanochemically obtained lanthanide hafnates, J. Amer. Ceram. Soc., 2017, p. 1. https://doi.org/10.1111/jace.14712

  5. Shlyakhtina, A.V. and Shcherbakova, L.G., New solid electrolytes of the pyrochlore family, Russ. J. Electrochem., 2012, vol. 48, p. 1. https://doi.org/10.1134/S1023193512010144

    Article  CAS  Google Scholar 

  6. Mullens, B.G., Zhang, Z., Avdeev, M., Brand, H.E.A., Cowie, B.C.C., Muzquiz, M.S., and Kennedy, B.J., Effect of long and short-range disorder on the oxygen ionic conductivity of Tm2(Tm2 – xTmx)O7 – x/2 “stuffed” pyrochlores, Inorg. Chem., 2021, vol. 60, p. 4517. https://doi.org/10.1021/acs.inorgchem.0c03363

    Article  CAS  PubMed  Google Scholar 

  7. Mullens, B.G., Zhang, Z., Avdeev, M., Brand, H.E.A., Cowie, B.C.C., Muzquiz, M.S., and Kennedy, B.J., Average and local ordering of Yb2(Ti2 – xYbx)O7 – x/2 ‘stuffed’ pyrochlores: The development of a robust structural model, J. Solid State Chem., 2021, vol. 302, p. 122412. https://doi.org/10.1016/j.jssc.2021.122412

    Article  CAS  Google Scholar 

  8. Lyskov, N.V., Shchegolikhin, A.N., Stolbov, D.N., Kolbanev, I.V., Gomes, E., Abrantes, J.C.C., and Shlyakhtina, A.V., Study of oxygen-ion conductivity and luminescence in the ZrO2–Nd2O3 system: impact of local heterogeneity, Electrochim. Acta, 2022, vol. 403, p. 139632.

    Article  CAS  Google Scholar 

  9. Shlyakhtina, A.V., Belov, D.A., Karyagina, O.K., and Shcherbakova, L.G., Ordering processes in Ln2TiO5 (Ln = Dy – Lu): The role of thermal history, J. Alloys Compd., 2009, vol. 479, p. 6.

    Article  CAS  Google Scholar 

  10. Shlyakhtina, A.V., Belov, D.A., Stefanovich, S.Y., and Shcherbakova, L.G., Nanostructuring phenomena in oxygen-conducting complex oxides of heavy REE, Russ. J. Electrochem., 2011, vol. 47, p. 620.

    Article  CAS  Google Scholar 

  11. Zvonareva, I., Fu, X.-Z., Medvedev, D., and Shao, Z., Electrochemistry and energy conversion features of protonic ceramic cells with mixed ionic-electronic electrolytes, Energy Environ. Sci., 2022, vol. 15, p. 439. https://doi.org/10.1039/D1EE03109K

    Article  CAS  Google Scholar 

  12. Medvedev, D.A., Current drawbacks of proton-conducting ceramic materials: How to overcome them for real electrochemical purposes, Curr. Opin. Green Sustain. Chem., 2021, vol. 32, p. 100549. https://doi.org/10.1016/j.cogsc.2021.100549

    Article  CAS  Google Scholar 

  13. Kasyanova, A.V., Radenko, A.O., Lyagaeva, Y.G., and Medvedev, D.A., Lanthanum-Containing Proton-Conducting Electrolytes with Perovskite Structures, Membr. and Membr. Technol., 2021, vol. 3, p. 73. https://doi.org/10.1134/S2517751621020050

    Article  CAS  Google Scholar 

  14. Hagiwara, T., Yamamura, H., and Nishino, H., Relationship between oxide-ion conductivity and ordering of oxygen vacancy in the Ln2Zr2O7 (Ln = La, Nd and Eu) system using high temperature XRD, J. Fuel Cell Sci. Technol., 2011, vol. 8, p. 051020.

    Article  Google Scholar 

  15. Xia, X.L., Gao, S., Liu, Z.G., and Ouyang, J.H., The influence of pentavalent Nb substitution for Zr on electrical property of oxide-ion conductor Gd2Zr2O7, Electrochim. Acta., 2010, vol. 55, no. 19, p. 5301.

    Article  CAS  Google Scholar 

  16. Anokhina, I.A., Animitsa, I.E., Voronin, V.I., Vykhodets, V.B., Kurennykh, T.E., Molchanova, N.G., Vylkov, A.I., Dedyukhin, A.E., and Zaikov, Y.P., The structure and electrical properties of lithium doped pyrochlore Gd2Zr2O7, Ceram. Intern., 2021, vol. 47, p. 1949.

    Article  CAS  Google Scholar 

  17. Sharma, S.K., Mohanty, H.S., Pradhan, D.K., Kumar, A., Shukla, V.K., Singh, F., and Kulriya, P.K., Structural, dielectric and electrical properties of pyrochlore-type Gd2Zr2O7 ceramic, J. Mater. Sci: Mater. Electron., 2020, vol. 31, p. 21959.

    CAS  Google Scholar 

  18. Shlyakhtina, A.V., Gorshkov, N.V., Kolbanev, I.V, Shefer, K.I., Kasyanova, A.V., and Medvedev, D.A., Electrical properties of Gd2Zr2O7 doped with beryllium, Neorgan. materialy (in Russian), 2021, vol. 57, no. 11, p. 1253. https://doi.org/10.31857/S0002337X21110117

  19. Liu, Z.G., Gao, S., Ouyang, J.H., and Xia, X.L., Influence of MoO3 doping on structure and electrical conductivity of defect fluorite-type Gd2Zr2O7, J. Alloys Compd., 2010, vol. 506, p. 868. https://doi.org/10.1016/j.jallcom.2010.07.101

    Article  CAS  Google Scholar 

  20. Anithakumari, P., Grover, V., Nandi, C., Bhattacharyya, K., and Tyagi, A.K., Utilizing non-stoichiometry in Nd2Zr2O7 pyrochlore: exploring superior ionic conductors, RSC Adv., 2016, vol. 6, p. 97566. https://doi.org/10.1039/C6RA08722A

    Article  CAS  Google Scholar 

  21. Shimura, T., Komori, M., and Iwahara, H., Ionic conduction in pyrochlore-type oxides containing rare earth elements at high temperature, Solid State Ionics, 1996, vol. 86, p. 685.

    Article  Google Scholar 

  22. Omata, T. and Otsuka-Yao-Matsuo, S., Electrical properties of proton-conducting Ca2+-doped La2Zr2O7 with a pyrochlore-type structure, J. Electrochem. Soc., 2001, vol. 148, p. 252.

    Article  Google Scholar 

  23. Omata, T., Ikeda, K., Tokashiki, R., and Otsuka-Yao-Matsuo, S., Proton solubility for La2Zr2O7 with a pyrochlore structure doped with a series of alkaline-earth ions, Solid State Ionics, 2004, vol. 167, p. 389.

    Article  CAS  Google Scholar 

  24. Labrincha, J.A., Frade, J.R., and Marques, F.M.B., Protonic conduction in La2Zr2O7-based pyrochlore materials, Solid State Ionics, 1997, vol. 99, p. 33.

    Article  CAS  Google Scholar 

  25. Antonova, E.P., Farlenkov, A.S., Tropin, E.S., Eremin, V.A., Khodimchuk, A.V., and Ananiev, M.V., Oxygen isotope exchange, water uptake and electrical conductivity of Ca-doped lanthanum zirconate, Solid State Ionics, 2017, vol. 306, p. 112.

    Article  CAS  Google Scholar 

  26. Shlyakhtina, A.V., Abrantes, J.C.C., Gomes, E., Lyskov, N.V., Konysheva, E.Yu., Chernyak, S.A., Kharitonova, E.P., Karyagina, O.K., Kolbanev, I.V., and Shcherbakova, L.G., Evolution of oxygen-ion and proton conductivity in Ca doped Ln 2Zr2O7 (Ln = Sm, Gd), located near pyrochlore – fluorite phase boundary, Materials, 2019, vol. 12, p. 2452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Eurenius, K.E.J., Ahlberg, E., and Knee, C.S., Role of B-site ion on proton conduction in acceptor-doped Sm2B2O7 – δ (B = Ti, Sn, Zr and Ce) pyrochlores and C-type compounds, Dalton Trans., 2011, vol. 40, p. 3946. https://doi.org/10.1039/c0dt01347a

    Article  CAS  PubMed  Google Scholar 

  28. Shlyakhtina, A.V., Lyskov, N.V., Konysheva, E.Yu., Chernyak, S.A., Kolbanev, I.V., Vorobieva, G.A., and Shcherbakova, L.G., Gas-tight proton-conducting Nd2 – xCaxZr2O7 – δ (x = 0, 0.05) ceramics, J. Solid State Electrochem., 2020, vol. 24, p. 1475. DOI.org/10.1007/s10008-020-04574-6

    Article  CAS  Google Scholar 

  29. Eurenius, K.E.J., Ahlberg, E., Ahmed, I., Eriksson, S.G., and Knee, C.S., Investigation of proton conductivity in Sm1.92Ca0.08Ti2O7 – δ and Sm2Ti1.92Y0.08O7 – δ pyrochlores, Solid State Ionics, 2010, vol. 181, p. 148.

    Article  CAS  Google Scholar 

  30. Kiruthika, G.V.M., Govindan Kutty, K.V., and Varadarju, U.V., Effect of aliovalent ion substitution on the oxide ion conductivity in rare-earth pyrohafnates RE2 – xSrxHf2O7 – δ and RE2Hf2 – xAlxO7 – δ (RE = Gd and Nd; x = 0, 0.1, and 0.2), Solid State Ionics, 1998, vol. 110, p. 335. https://doi.org/10.1016/S0167-2738(98)00140-4

    Article  CAS  Google Scholar 

  31. Cepeda-Sanchez, N.M., Dias-Guillen, J.A., Macka, M., Amador, U., and Fuentes, A., Mechanochemical synthesis, crystal structure and ion conduction in the Gd2Hf2 – xTixO7 system, J. Mater. Sci., 2017, vol. 52, p. 11933. https://doi.org/10.1007/s10853-017-1037-2

    Article  CAS  Google Scholar 

  32. Cepeda-Sanchez, N.M., Fuentes, A.F., Lopez-Cota, F.A., Rodrigues-Reyes, M., and Dias-Guillen, J.A., Mechanochemical synthesis and electrical properties of Gd2Hf2 – xZrxO7 solid electrolytes for their use in SOFC’s, J. Appl. Electrochem., 2015, vol. 45, p. 1231. https://doi.org/10.1007/s10800-015-0828-x

    Article  CAS  Google Scholar 

  33. Sardar, S., Kale, G., and Ghadiri, M., Microstructure and impedance spectroscopy of high density holmium hafnate (Ho2Hf2O7) from nanoparticulate compacts, Mater. Sci. Eng. B, 2021, vol. 265, p. 114989. https://doi.org/10.1016/j.mseb.2020.114989

    Article  CAS  Google Scholar 

  34. Shlyakhtina, A.V., Lyskov, N.V., Shchegolikhin, A.N., Kolbanev, I.V., Chernyak, S.A., and Konysheva, E.Yu., Valence state of europium and samarium in Ln2Hf2O7 (Ln = Eu, Sm) based in oxygen—ion conductors, Ceram. Intern., 2021, vol. 47, p. 26898. https://doi.org/10.1016/j.ceramint.2021.06.099

    Article  CAS  Google Scholar 

  35. Rejith, R.S., Sam Solomon, Influence of pyrochlore domains on the structure and electrical properties Gd2 – xDyxZr1.5Hf0.5O7 energy materials, J. Alloys Compounds, 2021, vol. 855, p. 157291.

    Article  CAS  Google Scholar 

  36. Mikuśkiewicz, M., Migas, D., and Moskal, G., Synthesis and thermal properties of zirconate, hafnate and cerate of samarium, Surface Coatings Technol., 2018, vol. 354, p. 66. https://doi.org/10.1016/j.surfcoat.2018.08.096

    Article  CAS  Google Scholar 

  37. Matovic, B., Maletaskic, J., Bucevac, D., Zagorac, J., Fajar, M., Yoshida, K., and Yano, T., Synthesis, characterization and sintering of Gd2Hf2O7 powders synthesized by solid state displacement reaction at low temperature, Ceram. Intern., 2018, vol. 44, p. 16972. https://doi.org/10.1016/j.ceramint.2018.06.138

    Article  CAS  Google Scholar 

  38. Mikuśkiewicz, M., Moskal, G., Migas, D., and Stopyr, M., Thermal diffusivity characterization of europium zirconate, cerate and hafnate, Ceram. Int., 2019, vol. 45, p. 2760. https://doi.org/10.1016/j.ceramint.2018.07.301

    Article  CAS  Google Scholar 

  39. Shlyakhtina, A.V., Lyskov, N.V., Shchegolikhin, A.N., Chernyak, S.A., Knotko, A.V., Kolbanev, I.V., and Shcherbakova, L.G., Structure evolution, ionic and proton conductivity of solid solutions based on Nd2Hf2O7, Ceram. Intern., 2020, vol. 46, p. 17383. https://doi.org/10.1016/j.ceramint.2020.04.029

    Article  CAS  Google Scholar 

  40. Shlyakhtina, A.V., Lyskov, N.V., Nikiforova, G.E., Kasyanova, A.V., Vorobieva, G.A., Kolbanev, I.V., Stolbov, D.N., and Medvedev, D.A., Proton conductivity of La2(Hf2 – xLax)O7 – x/2 “stuffed” pyrochlores, Appl. Sci., 2022, vol. 12, p. 4342. https://doi.org/10.3390/app12094342

    Article  CAS  Google Scholar 

  41. ZView (Scribner Associates Inc., USA).

  42. Shlyakhtina, A.V. and Pigalskiy, K.S., Tolerance factor as the basic criterion in searching for promising oxygen-ion and proton conductors among Ln2 – xDxM2O7 – δ (Ln = La – Lu; M = Sn, Ti, Zr, Hf; D = Sr, Ca, Mg; x = 0, 0.1) 3+/4+ pyrochlores, Mater. Res. Bull., 2019, vol. 116, p. 72. https://doi.org/10.1016/j.materresbull.2019.04.021

    Article  CAS  Google Scholar 

  43. Kreller, C.R. and Uberuaga, B.P., The role of cation ordering and disordering on mass transport in complex oxides, Current Opinion Solid State Mater. Sci., 2021, vol. 25, p. 100899. https://doi.org/10.1016/j.cossms.2021.100899

    Article  CAS  Google Scholar 

  44. Subramanian, M.A., Aravamudan, G., and Subba Rao, G.V., Oxide pyrochlores – a review, Progress. Solid State Chem., 1983, vol. 15, p. 55. https://doi.org/10.1016/0079-6786(83)90001-8

    Article  CAS  Google Scholar 

Download references

Funding

This study was subsidized by the Ministry of Sciences and Higher Education of the Russian Federation in frames of the Semenov Federal Research Center for Chemical Physics State contract “Next-generation nanostructured systems with unique functional properties” (reg. no. 122040500071-0). The material conductivity study is performed in part in frames of the Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry contract (the State reg. no. АААА-А19-119061890019-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shlyakhtina.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Based on the materials of the 16th International Meeting “Fundamental Problems of Solid State Ionics,” Chernogolovka, June 27–July 7, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shlyakhtina, A.V., Lyskov, N.V., Kolbanev, I.V. et al. Proton and Oxygen-Ion Conductivity of the Pure and Lanthanide-Doped Hafnates with Pyrochlore Structure. Russ J Electrochem 59, 449–460 (2023). https://doi.org/10.1134/S1023193523060058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523060058

Keywords:

Navigation