Skip to main content
Log in

Conductivity of Lithium-Conducting Nafion Membranes Plasticized by Binary and Ternary Mixtures in the Sulfolan–Ethylene Carbonate–Diglyme System

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The electrotransport characteristics of the polymer electrolyte based on lithiated Nafion-115 membrane plasticized by high-boiling dipolar aprotic solvents—sulfolane (SL), ethylene carbonate (EC), and diglyme (G2) and also by their binary and ternary mixtures are studied in a wide temperature interval (from –60 to +80°C). The best transport properties (conductivity 10–5–10–4 S cm–1 in the interval from –20 to +70°C) are demonstrated by samples plasticized with binary mixtures EC/G2 and EC/SL in certain ratios. The ternary plasticizer provides low activation energy (10–20 kJ mol–1) and sufficiently high conductivity in the temperature region not lower than –10°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Zhang, H., Li, C., Piszcz, M., Coya, E., Rojo, T., Rodriguez-Martinez, L.M., Armand, M., and Zhou, Z., Single lithium-ion conducting solid polymer electrolytes: advances and perspectives, Chem. Soc. Rev., 2017, vol. 46, p. 797.

    Article  CAS  PubMed  Google Scholar 

  2. Voropaeva, D.Y., Novikova, S.A., and Yaroslavtsev, A.B., Polymer electrolytes for metal-ion batteries, Russ. Chem. Rev., 2020, vol. 89. Iss. 10, p. 1132.

    Article  CAS  Google Scholar 

  3. Kusoglu, A. and Weber, A.Z., New insights into perfluorinated sulfonic-acid ionomers, Chem. Rev., 2017, vol. 117, p. 987.

    Article  CAS  PubMed  Google Scholar 

  4. Doyle, M., Lewittes, M.E., Roelofs, M.G., Perusich, S.A., and Lowrey, R.E., Relationship between ionic conductivity of perfluorinated ionomeric membranes and nonaqueous solvent properties, J. Membr. Sci., 2001, vol. 184, p. 257.

    Article  CAS  Google Scholar 

  5. Sachan, S., Ray, C.A., and Perusich, S.A., Lithium ion transport through nonaqueous perfluoroionomeric membranes, Polym. Eng. Sci., 2002, vol. 42, p. 1469.

    Article  CAS  Google Scholar 

  6. Sanginov, E.A., Kayumov, R.R., Shmygleva, L.V., Lesnichaya, V.A., Karelin, A.I., and Dobrovolsky, Yu.A., Study of the transport of alkali metal ions in a nonaqueous polymer electrolyte based on Nafion, Solid State Ionics, 2017, vol. 300, p. 26.

    Article  CAS  Google Scholar 

  7. Sanginov, E.A., Evshchik, E.Y., Kayumov, R.R., and Dobrovol’skii, Yu.A., Lithium-ion conductivity of the Nafion membrane swollen in organic solvents, Russ. J. Electrochem., 2015, vol. 51, p. 986.

    Article  CAS  Google Scholar 

  8. Liu, Y., Cai, Z., Tan, L., and Li, L., Ion exchange membranes as electrolyte for high performance Li-ion batteries, Energy Environ. Sci., 2012, vol. 5, p. 9007.

    Article  CAS  Google Scholar 

  9. Doyle, M., Lewittes, M.E., Roelofs, M.G., and Perusich, S.A., Ionic conductivity of nonaqueous solvent-swollen ionomer membranes based on fluorosulfonate, fluorocarboxylate, and sulfonate fixed ion groups, J. Phys. Chem. B, 2001, vol. 105, p. 9387.

    Article  CAS  Google Scholar 

  10. Su, L., Darling, R.M., Gallagher, K.G., Xie, W., Thelen, J.L., Badel, A.F., Barton, J.L., Cheng, K.J., Balsara, N.P., Moore, J.S., and Brushett, F.R., An investigation of the ionic conductivity and species crossover of lithiated Nafion 117 in nonaqueous electrolytes, J. Electrochem. Soc., 2016, vol. 163, p. A5253.

    Article  CAS  Google Scholar 

  11. Voropaeva, D.Y., Novikova, S.A., Kulova, T.L., and Yaroslavtsev, A.B., Conductivity of Nafion-117 membranes intercalated by polar aprotonic solvents, Ionics, 2018, vol. 24, p. 1685.

    Article  CAS  Google Scholar 

  12. Gao, J., Sun, C., Xu, L., Chen, J., Wang, C., Guo, D., and Chen, H., Lithiated Nafion as polymer electrolyte for solid-state lithium sulfur batteries using carbon-sulfur composite cathode, J. Power Sources, 2018, vol. 382, p. 179.

    Article  CAS  Google Scholar 

  13. Gao, J., Shao, Q., and Chen, J., Lithiated Nafion-garnet ceramic composite electrolyte membrane for solid-state lithium metal battery, J. Energy Chem., 2020, vol. 46, p. 237.

    Article  Google Scholar 

  14. Liang, H.-Y., Qiu, X.-P., Zhang, S.-C., Zhu, W.-T., and Chen, L.-Q., Study of lithiated Nafion ionomer for lithium batteries, J. Appl. Electrochem., 2004, vol. 34, p. 1211.

    Article  CAS  Google Scholar 

  15. Cai, Z., Liu, Y., Liu, S., Li, L., and Zhang, Y., High performance of lithium-ion polymer battery based on non-aqueous lithiated perfluorinated sulfonic ion-exchange membranes, Energy Environ. Sci., 2012, vol. 5, p. 5690.

    Article  CAS  Google Scholar 

  16. Navarrini, W., Scrosati, B., Panero, S., Ghielmi, A., Sanguineti, A., and Geniram, G., Lithiated short side chain perfluorinated sulfonic ionomeric membranes: Water content and conductivity, J. Power Sources, 2008, vol. 178, p. 783.

    Article  CAS  Google Scholar 

  17. Doyle, M., Fuller, T.F., and Newman, J., The importance of the lithium ion transference number in lithium/polymer cells, Electrochim. Acta, 1994, vol. 39, p. 2073.

    Article  CAS  Google Scholar 

  18. Voropaeva, D.Y., Novikova, S.A., Xu, T., and Yaroslavtsev, A.B., Polymer electrolytes for LIBs based on perfluorinated sulfocationic Nepem-117 membrane and aprotic solvents, J. Phys. Chem. B, 2019, vol. 123, p. 10217.

    Article  CAS  PubMed  Google Scholar 

  19. Henderson, W.A., Brooks, N.R., Brennessel, W.W., and Young, V.G., Jr., LiClO4 electrolyte solvate structures, J. Phys. Chem. A, 2004, vol. 108, p. 225.

    Article  CAS  Google Scholar 

  20. Kayumov, R.R., Sanginov, E.A., Shmygleva, L.V., Radaeva, A.P., Karelin, A.I., Zyubin, A.S., Zyubina, T.S., Anokhin, D.V., Ivanov, D.A., and Dobrovolsky, Yu.A., Ammonium form of Nafion plasticized by dimethyl sulfoxide, J. Electrochem. Soc., 2019, vol. 166, p. F3216.

    Article  CAS  Google Scholar 

  21. Gordon, A.J. and Ford, R.A., The Chemist’s Companion: A Handbook of Practical Data, Techniques, and References, New York: Wiley, 1972.

    Google Scholar 

  22. Hess, S., Wohlfahrt-Mehrens, M., and Wachtler, M., Flammability of Li-ion battery electrolytes: flash point and self-extinguishing time measurements, J. Electrochem. Soc., 2015, vol. 162, p. A3084.

    Article  CAS  Google Scholar 

  23. Watanabe, Y., Kinoshita, S.-I., Wada, S., Hoshino, K., Morimoto, H., and Tobishima S.-I., Electrochemical properties and lithium ion solvation behavior of sulfone-ester mixed electrolytes for high-voltage rechargeable lithium cells, J. Power Sources, 2008, vol. 179, p. 770.

    Article  CAS  Google Scholar 

  24. Maca, J., Frk, M., and Sedlarikova, M., Properties of electrolytes for Li-ion batteries with higher fire safety, Renewable Energy Power Qual. J., 2013, vol. 1, no. 11, p. 218.

    Article  Google Scholar 

  25. Demakhin, A.G., Ovsyannikov, V.M., and Ponomarenko, S.M., Elektrolitnye sistemy litievykh KhIT (Electrolyte systems of lithium chemical power sources), Saratov: Saratov Univ., 1993.

  26. Huang, Y., Zhao, L., Li, L., Xie, M., Wu, F., and Chen, R., Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: from scientific research to practical application, Adv. Mater., 2019, vol. 31, p. 1808393.

    Article  CAS  Google Scholar 

  27. Johnson, P.H., The properties of ethylene carbonate and its use in electrochemical applications: A literature review, Lawrence Berkeley Lab., CA (USA), 1985.

    Google Scholar 

  28. Tang, S. and Zhao, H., Glymes as versatile solvents for chemical reactions and processes: from the laboratory to industry, RSC Adv., 2014, vol. 4, p. 11251.

    Article  CAS  PubMed  Google Scholar 

  29. Bogle, X., Vazquez, R., Greenbaum, S., Cresce, A.V.W., and Xu, K., Understanding Li+–solvent interaction in nonaqueous carbonate electrolytes with 17O-NMR, J. Phys. Chem. Lett., 2013, vol. 4, p. 1664.

    Article  CAS  PubMed  Google Scholar 

  30. Allen, J.L., Borodin, O., Seo, D.M., and Henderson, W.A., Combined quantum chemical/Raman spectroscopic analyses of Li+ cation solvation: Cyclic carbonate solvents—ethylene carbonate and propylene carbonate, J. Power Sources, 2014, vol. 267, p. 821.

    Article  CAS  Google Scholar 

  31. Allen, J.L., Seo, D.M., Ly, Q.D., Boyle, P.D., and Henderson, W.A., Solvent-LiBF4 phase diagrams, ionic association and solubility—cyclic carbonates and lactones, ECS Trans., 2012, vol. 41, p. 41.

    Article  CAS  Google Scholar 

  32. Seo, D.M., Afroz, T., Ly, Q., O’Connell, M., Boyle, P.D., and Henderson, W.A., A “looking glass” into electrolyte properties: cyclic carbonate and ester-LiClO4 mixtures, ECS Trans., 2012, vol. 41, p. 11.

    Article  CAS  Google Scholar 

  33. Hyodo, S. and Okabayashi, K., Raman intensity study of local structure in non-aqueous electrolyte solutions. I. Cation-solvent interaction in LiClO4–ethylene carbonate, Electrochim. Acta, 1989, vol. 34, p. 1551.

    Article  CAS  Google Scholar 

  34. Masia, M., Probst, M., and Rey, R., Ethylene carbonate-Li+: A theoretical study of structural and vibrational properties in gas and liquid phases, J. Phys. Chem. B, 2004, vol. 108, p. 2016.

    Article  CAS  Google Scholar 

  35. Xuan, X., Wang, J., Lu, J., Pei, N., and Mo, Y., Ion solvation and association in LiClO4/sulfolane solution: a vibrational spectroscopic and molecular orbital study, Spectrochim. Acta A, 2001, vol. 57, p. 1555.

    Article  CAS  Google Scholar 

  36. Alvarado, J., Schroeder, M.A., Zhang, M., Borodin, O., Gobrogge, E., Olguin, M., Ding, M.S., Gobet, M., Greenbaum, S., and Xu, K., A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries, Mater. Today, 2018, vol. 21, p. 341.

    Article  CAS  Google Scholar 

  37. Watanabe, M., Thomas, M.L., Zhang, S., Ueno, K., Yasuda, T., and Dokko, K., Application of ionic liquids to energy storage and conversion materials and devices, Chem. Rev., 2017, vol. 117, p. 7190.

    Article  CAS  PubMed  Google Scholar 

  38. Rhodes, C.P. and Frech, R., Local structures in crystalline and amorphous phases of diglyme-LiCF3SO3 and poly(ethylene oxide)-LiCF3SO3 systems: Implications for the mechanism of ionic transport, Macromolecules, 2001, vol. 34, p. 2660.

    Article  CAS  Google Scholar 

  39. Huang, W. and Frech, R. Dependence of ionic association on polymer chain length in poly(ethylene oxide)-lithium triflate complexes, Polymer, 1994, vol. 35(2), p. 235.

    Article  CAS  Google Scholar 

  40. Peng, J., Carbone, L., Gobet, M., Hassoun, J., Devany, M., and Greenbaum, S., Natural abundance oxygen-17 NMR investigation of lithium ion solvation in glyme-based electrolytes, Electrochim. Acta, 2016, vol. 213, 606.

    Article  CAS  Google Scholar 

  41. Ueno, K., Tatara, R., Tsuzuki, S., Saito, S., Doi, H., Yoshida, K., Mandai, T., Matsugami, M., Umebayashi, Y., Dokko, K., and Watanabe, M., Li+ solvation in glyme–Li salt solvate ionic liquids, Phys. Chem. Chem. Phys., 2015, vol. 17, p. 8248.

    Article  CAS  PubMed  Google Scholar 

  42. Morales, D., Ruther, R.E., Nanda, J., and Greenbaum, S., Ion transport and association study of glyme-based electrolytes with lithium and sodium salts, Electrochim. Acta, 2019, vol. 304, p. 239.

    Article  CAS  Google Scholar 

  43. Huang, W., Frech, R., Johansson, P., and Lindgren, J., Cation–polymer interaction and ionic association in diglyme–LiCF3SO3 and diglyme–propylene carbonate–LiCF3SO3 complexes, Electrochim. Acta, 1995, vol. 40, p. 2147.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Scientific Foundation (grant no. 18-19-00014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. R. Kayumov or O. V. Bushkova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by T. Safonova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayumov, R.R., Shmygleva, L.V., Evshchik, E.Y. et al. Conductivity of Lithium-Conducting Nafion Membranes Plasticized by Binary and Ternary Mixtures in the Sulfolan–Ethylene Carbonate–Diglyme System. Russ J Electrochem 57, 911–920 (2021). https://doi.org/10.1134/S1023193521060045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193521060045

Keywords:

Navigation