Skip to main content
Log in

Oxygen Mobility in the Materials for Solid Oxide Fuel Cells and Catalytic Membranes (Review)

Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract—

Oxygen transport (including oxygen mobility and surface reactivity) is one of the important factors governing electrochemical activity of solid oxide fuel cells electrodes as well as oxygen and hydrogen separation membranes based on materials with mixed oxide-ionic and electronic conductivity. In this work, oxygen mobility data obtained for a series of materials destined for such devices using modern techniques of oxygen isotope heteroexchange are summarized. Series of solid oxide fuel cells’ and membranes’ materials were studied by isotope exchange of their oxygen with 18O2 and C18O2 in isothermal and temperature-programmed modes using closed and flow reactors and data analysis based on developed model of oxygen diffusion and exchange. For solid electrolytes’ materials (Sc- and Ce-doped zirconia) as well as for proton-conducting materials [Ln5.5(Mo,W)O11.25], the effect of composition heterogeneity on the oxygen mobility was demonstrated. For Ln6 – xWO12 – δ, a strong effect of structure on the oxygen mobility was demonstrated. For oxides with asymmetric structure, where oxygen migration proceeds via cooperative mechanisms [La2(Mo,W)2O9, (Ln,Ca)2NiO4], the doping hampers the cooperative migration, resulting in oxygen mobility deterioration and sometimes forming additional slow diffusion channels. In the PrNi0.5Co0.5O3–Ce0.9Y0.1O2 nanocomposites that are materials of the solid oxide fuel cells’ cathode and functional layer of the oxygen separation membranes, two diffusion channels were observed, where more mobile oxygen corresponds to the fluorite phase and interfaces; less mobile, to the perovskite phase. This is due to special features of cations redistribution between the phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Steele, B.C.H. and Heinzel, A., in Materials for fuel-cell technologies, in Materials for Sustainable Energy, Dusastre, V., Ed., World Scientific Publishing, Co-Published with Macmillan Publishers, UK, 2010, p. 224. https://doi.org/10.1142/9789814317665_0031.

    Chapter  Google Scholar 

  2. Basu, R.N., Materials for solid oxide fuel cells, in Recent Trends in Fuel Cell Science and Technology, Basu, S., Ed., New York: Springer, 2007, p. 286. https://doi.org/10.1007/978-0-387-68815-2_12

    Book  Google Scholar 

  3. Sadykov, V., Usoltsev, V., Fedorova, Y., Mezentseva, N., Krieger, T., Eremeev, N., Arapova, M., Ishchenko, A., Salanov, A., Pelipenko, V., Muzykantov, V., Ulikhin, A., Uvarov, N., Bobrenok, O., Vlasov, A., Korobeynikov, M., Bryazgin, A., Arzhannikov, A., Kalinin, P., Smorygo, O., and Thumm, M., Advanced sintering techniques in design of planar IT SOFC and supported oxygen separation membranes, in Sintering of Ceramics, Lakshmanan. A.. Ed., Vienna: IntechOpen, 2012, p. 121. https://doi.org/10.5772/34958

    Google Scholar 

  4. Ormerod, R.M., Solid oxide fuel cells, Chem. Soc. Rev., 2003, vol. 32, p. 17. https://doi.org/10.1039/b105764m

    Article  CAS  PubMed  Google Scholar 

  5. Sadykov, V.A., Pavlova, S.N., Kharlamova, T.S., Muzykantov, V.S., Uvarov, N.F., Okhlupin, Y.S., Ishchenko, A.V., Bobin, A.S., Mezentseva, N.V., Alikina, G.M., Lukashevich, A.I., Krieger, T.A., Larina, T.V., Bulgakov, N.N., Tapilin, V.M., Belyaev, V.D., Sadovskaya, E.M., Boronin, A.I., Sobyanin, V.A., Bobrenok, O.F., Smirnova, A.L., Smorygo, O.L., and Kilner, J.A., Perovskites and their nanocomposites with fluorite-like oxides as materials for solid oxide fuel cells cathodes and oxygen-conducting membranes: Mobility and reactivity of the surface/bulk oxygen as a key factor of their performance, in Perovskites: Structure, Properties and Uses, Borovski, M., Ed., New York: Nova Science Publishers, 2010, p. 67.

    Google Scholar 

  6. Sadykov, V.A., Muzykantov, V.S., Yeremeev, N.F., Pelipenko, V.V., Sadovskaya, E.M., Bobin, A.S., Fedorova, Y.E., Amanbaeva, D.G., and Smirnova, A.L., Solid oxide fuel cell cathodes: Importance of chemical composition and morphology, Catal. Sustain. Energy, 2015, vol. 2, p. 57.https://doi.org/10.1515/cse-2015-0004

    Article  CAS  Google Scholar 

  7. Sadykov, V.A., Mezentseva, N.V., Bobrova, L.N., Smorygo, O.L., Eremeev, N.F., Fedorova, Y.E., Bespalko, Y.N., Skriabin, P.I., Krasnov, A.V., Lukashevich, A.I., Krieger, T.A., Sadovskaya, E.M., Belyaev, V.D., Shmakov, A.N., Vinokurov, Z.S., Bolotov, V.A., T-anashev, Y.Y., Korobeynikov, M.V., and Mikhailenko, M.A., Advanced materials for solid oxide fuel cells and membrane catalytic reactors, in Advanced Nanomaterials for Catalysis and Energy, Sadykov, V.A., Ed., Elsevier, 2019, pp. 435–514. https://doi.org/10.1016/B978-0-12-814807-5.00012-7

    Google Scholar 

  8. Steele, B.C.H. State-of-the-art SOFC ceramic materials, Proc. 1 Eur. SOFC Forum, 1994, p. 375.

  9. Dicks, A., Advances in catalysts for internal reforming in high temperature fuel cells, J. Power Sources, 1998, vol. 71, p. 111. https://doi.org/10.1016/S0378-7753(97)02753-5

    Article  CAS  Google Scholar 

  10. Kim, I., Pillai, M.R., and Barnett, S.A., Liquid-hydrocarbon internal reforming in catalyst-assisted SOFCs, ECS Trans., 2007, vol. 7, p. 81. https://doi.org/10.1149/1.2729170

    Article  Google Scholar 

  11. De Souza, E.C.C. and Muccillo, R., Properties and applications of perovskite proton conductors, Mater. Res., 2010, vol. 13, p. 385. https://doi.org/10.1590/S1516-14392010000300018

    Article  Google Scholar 

  12. Adhikari, S. and Fernando, S., Hydrogen membrane separation techniques, Ind. Eng. Chem. Res., 2006, vol. 45, no. 3, p. 875. https://doi.org/10.1021/IE050644L

    Article  CAS  Google Scholar 

  13. Sadykov, V., Smirnova, A., Lukashevich, A., Vostrikov, Z., Rogov, V., Krieger, T., Ishchenko, A., Zaikovsky, V., Bobrova, L., Ross, J., Smorygo, O., Smirnova, A., Rietveld, B., and van Berkel, F., Nanocomposite catalysts for steam reforming of methane and biofuels: Design and performance, in Advances in Nanocomposites – Synthesis, Characterization and Industrial Applications, Reddy, B., Ed., Rijeka: InTech, 2011, p. 90.

    Google Scholar 

  14. Adler, S.B., Factors governing oxygen reduction in solid oxide fuel cell cathodes, Chem. Rev., 2004, vol. 104, p. 4791. https://doi.org/10.1021/CR020724O

    Article  CAS  PubMed  Google Scholar 

  15. Gao, Z., Mogni, L.V., Miller, E.C., Railsback, J.G., and Barnett, S.A., A perspective on low-temperature solid oxide fuel cells, Energy Environ. Sci., 2016, vol. 9, p. 1602. https://doi.org/10.1039/C5EE03858H

    Article  CAS  Google Scholar 

  16. Kolchugin, A.A., Pikalova, E.Y., Bogdanovich, N.M., Bronin, D.I., Pikalov, S.M., Plaksin, S.V., Ananyev, M.V., and Eremin, V.A., Structural, electrical and electrochemical properties of calcium-doped lanthanum nickelate, Solid State Ionics, 2016, vol. 288, p. 48. https://doi.org/10.1016/j.ssi.2016.01.035

    Article  CAS  Google Scholar 

  17. Flura, A., Nicollet, C., Vibhu, V., Zeimetz, B., Rougier, A., Bassat, J.-M., and Grenier, J.-C., Application of the Adler-Lane-Steele model to porous La2NiO4 + δ SOFC cathode: Influence of interfaces with gadolinia doped ceria, J. Electrochem. Soc., 2016, vol. 163, p. F523. https://doi.org/10.1149/2.0891606jes

    Article  CAS  Google Scholar 

  18. Adler, S.B., Lane, J.A., and Steele, B.C.H., Electrode kinetics of porous mixed-conducting oxygen electrodes, J. Electrochem. Soc., 1996, vol. 143, p. 3554. https://doi.org/10.1149/1.1837252

    Article  CAS  Google Scholar 

  19. Poetzsch, D., Merkle, R., Maier, J., Maier, J., Merkle, R., Maier, J., Maier, J., Kölsch, P., and Werth, S., Proton conductivity in mixed-conducting BSFZ perovskite from thermogravimetric relaxation, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 16 446. https://doi.org/10.1039/C4CP00459K

    Article  Google Scholar 

  20. Escolástico, S., Somacescu, S., and Serra, J.M., Ta-iloring mixed ionic–electronic conduction in H2 permeable membranes based on the system Nd5.5W1 – xMoxO11.25 – δ, J. Mater. Chem. A., 2015, vol. 3, p. 719.https://doi.org/10.1039/C4TA03699A

    Article  CAS  Google Scholar 

  21. Muzykantov, V.S., Popovskii, V.V., and Boreskov, G.K., Kinetics of isotope exchange in a molecular oxygen–solid oxide system, Kinetika i Kataliz (in Russian), 1964, vol. 5, no. 4, p. 624.

    CAS  Google Scholar 

  22. Chater, R.J., Carter, S., Kilner, J.A., and Steele, B.C.H., Development of a novel SIMS technique for oxygen self-diffusion and surface exchange coefficient measurements in oxides of high diffusivity, Solid State Ionics, 1992, vol. 53–56, p. 859. https://doi.org/10.1016/0167-2738(92)90266-R

    Article  Google Scholar 

  23. Sadykov, V.A., Sadovskaya, E.M. and Uvarov, N.F., Methods of relaxations for estimation of oxygen diffusion coefficients in solid electrolytes and materials with mixed ionic-electronic conductivity, Russ. J. Electrochem., 2015, vol. 51, no. 5, p. 458. https://doi.org/10.1134/S1023193515050109

    Article  CAS  Google Scholar 

  24. Sadykov, V., Sadovskaya, E., Bobin, A., Kharlamova, T., Uvarov, N., Ulikhin, A., Argirusis, C., Sourkouni, G., and Stathopoulos, V., Temperature-programmed C18O2 SSITKA for powders of fast oxide-ion conductors: Estimation of oxygen self-diffusion coefficients, Solid State Ionics, 2015, vol. 271, p. 69. https://doi.org/10.1016/j.ssi.2014.11.004

    Article  CAS  Google Scholar 

  25. De Souza, R.A. and Kilner, J.A., Oxygen transport in La1 – xSrxMn1 – yCoyO3 ± δ perovskites: Part I. Oxygen tracer diffusion, Solid State Ionics, 1998, vol. 106, p. 175. https://doi.org/10.1016/S0167-2738(97)00499-2

    Article  CAS  Google Scholar 

  26. Muzykantov, V.S., Kemnitz, E., Sadykov, V.A., and Lunin, V.V., Interpretation of isotope exchange data “without time”: Nonisothermal exchange of dioxygen with oxides, Kinetics Catalysis, 2003, vol. 44, no. 3, p. 319.

    Article  CAS  Google Scholar 

  27. Starkov, I.A., Bychkov, S.F., Chizhik, S.A., and Nemudry, A.P., Oxygen release from grossly nonstoichiometric SrCo0.8Fe0.2O3 – δ perovskite in isostoichiometric mode, Chem. Mat., 2014, vol. 26, p. 2113. https://doi.org/10.1021/cm4040775

    Article  CAS  Google Scholar 

  28. Bychkov, S.F., Popov, M.P., and Nemudry, A.P., Study of the oxygen exchange kinetics in the nonstoichiometric oxide SrFeO3 – δ under isostoichiometric conditions using the oxygen partial pressure relaxation technique, Kinetics Catalysis, 2016, vol. 57, no. 5, p. 697. https://doi.org/10.1134/S0023158416050050

    Article  CAS  Google Scholar 

  29. Bychkov, S.F., Gainutdinov, I.I., Chizhik, S.A., and Nemudry, A.P., Novel oxygen partial pressure relaxation technique for study of oxygen exchange in nonstoichiometric oxides. The model of relaxation kinetics, Solid State Ionics, 2018, vol. 320, p. 297.

    Article  CAS  Google Scholar 

  30. Zimens, K.E., Zur Kinetik heterogener Austaiisclireaktionen, Akt. Kemi, Mineral. Geol., 1945, vol. 20 A, p. 1.

  31. Winter, E.R.S., The reactivity of oxide surfaces, Adv. Catal., 1958, vol. 10, p. 196.

    CAS  Google Scholar 

  32. Roginskii, S.Z., Theorhetical basics of methods of chemical reactions study (in Russian), Moskow: Izd. AN SSSR, 1956.

  33. Klier, K., Nováková, J., and Jíru, P., Exchange reactions of oxygen between oxygen molecules and solid oxides, J. Catal., 1963, vol. 2, p. 479. https://doi.org/10.1016/0021-9517(63)90003-4

    Article  CAS  Google Scholar 

  34. Kilner, J.A., De Souza, R.A., and Fullarton, I.C., Surface exchange of oxygen in mixed conducting perovskite oxides, Solid State Ionics, 1996, vol. 86–88, p. 703. https://doi.org/10.1016/0167-2738(96)00153-1

    Article  Google Scholar 

  35. Adler, S.B., Chen, X.Y., and Wilson, J.R., Mechanisms and rate laws for oxygen exchange on mixed-conducting oxide surfaces, J. Catal., 2007, vol. 245, p. 91. https://doi.org/10.1016/J.JCAT.2006.09.019

    Article  CAS  Google Scholar 

  36. Bouwmeester, H.J.M., Song, C., Zhu, J., Yi, J., van Sint Annaland, M. and Boukamp, B.A., A novel pulse exchange technique for rapid determination of the oxygen surface exchange rate of oxide ion conductors, Phys. Chem. Chem. Phys., 2009, vol. 11, p. 9640. https://doi.org/10.1039/b912712g

    Article  CAS  PubMed  Google Scholar 

  37. Boehm, E., Bassat, J., Dordor, P., Mauvy, F., Grenier, J., and Stevens, P., Oxygen diffusion and transport properties in non-stoichiometric Ln2 – xNiO4 + δ oxides, Solid State Ionics, 2005, vol. 176, p. 2717. https://doi.org/10.1016/j.ssi.2005.06.033

    Article  CAS  Google Scholar 

  38. Sadovskaya, E.M., Bobin, A.S., and Skazka, V.V., transient analysis of oxygen exchange over oxides, Chem. Eng. J., 2018, vol. 348, p. 1025. https://doi.org/10.1016/J.CEJ.2018.05.027

    Article  CAS  Google Scholar 

  39. Ananyev, M.V., Kurumchin, E.K., and Porotnikova, N.M., Effect of oxygen nonstoichiometry on kinetics of oxygen exchange and diffusion in lanthanum-strontium cobaltites, Russ. J. Electrochem., 2010, vol. 46, no. 7, p. 789. https://doi.org/10.1134/S1023193510070128

    Article  CAS  Google Scholar 

  40. Ananyev, M.V., Farlenkov, A.S., and Kurumchin, E.K., exchange between hydrogen from the gas phase and proton-conducting oxides: Theory and experiment, Int. J. Hydrogen Energy, 2018, vol.43, p. 13 373.

    Article  Google Scholar 

  41. Ananyev, M.V., Tropin, E.S., Eremin, V.A., Farlenkov, A.S., Smirnov, A.S., Kolchugin, A.A., Porotnikova, N.M., Khodimchuk, A.V., Berenov, A.V., and Kurumchin, E.K., Oxygen isotope exchange in La2NiO4 ± δ, Phys. Chem. Chem. Phys., 2016, vol. 18, p. 9102.

    Article  CAS  Google Scholar 

  42. Parfenov, M.V., Starokon, E.V., Semikolenov, S.V., and Panov, G.I., O2 exchange in the presence of O anion radicals on the FeZSM-5 surface, J. Catal., 2009, vol. 263, p. 173. https://doi.org/10.1016/J.JCAT.2009.02.009

    Article  CAS  Google Scholar 

  43. Boreskov, G.K., Catalysis: Problems on theory and practice: Selected works (in Russian), Novosibirsk: Nauka, 1987.

    Google Scholar 

  44. Boreskov, G.K. and Muzykantov, V.S., Investigation of oxide-type oxidation catalysts by reactions of oxygen exchange, Ann. N.Y. Acad. Sci., 1973, vol. 213, p. 137. https://doi.org/10.1111/j.1749-6632.1973.tb51065.x

    Article  CAS  PubMed  Google Scholar 

  45. Muzykantov, V.S., studies of dioxygen activation on oxide catalysts for oxidation: Problems, results and perspectives, React. Kinet. Catal. Lett., 1987, vol. 35, p. 437.https://doi.org/10.1007/BF02062178

    Article  CAS  Google Scholar 

  46. Mizusaki, J., Mima, Y., Yamauchi, S., Fueki, K., and Tagawa, H., Nonstoichiometry of the perovskite-type oxides La1 – xSrxCoO3 – δ, J. Solid State Chem., 1989, vol. 80, p. 102. https://doi.org/10.1016/0022-4596(89)90036-4

    Article  CAS  Google Scholar 

  47. Armstrong, E.N., Duncan, K.L., and Wachsman, E.D., Effect of A and B-site cations on surface exchange coefficient for ABO3 perovskite materials, Phys. Chem. Chem. Phys., 2013, vol. 15, p. 2298. https://doi.org/10.1039/c2cp42919e

    Article  CAS  PubMed  Google Scholar 

  48. Pikalova, E.Y., Kolchugin, A.A., Sadykov, V.A., Sadovskaya, E.M., Filonova, E.A., Eremeev, N.F., and Bogdanovich, N.M., Structure, transport properties and electrochemical behavior of the layered lanthanide nickelates doped with calcium, Int. J. Hydrogen Energy, 2018, vol. 43, p. 17 373. https://doi.org/10.1016/J.IJHYDENE.2018.07.115

    Article  Google Scholar 

  49. Sadykov, V.A., Pikalova, E.Y., Kolchugin, A.A., Filonova, E.A., Sadovskaya, E.M., Eremeev, N.F., Ishchenko, A.V., Fetisov, A.V., and Pikalov, S.M., Oxygen transport properties of Ca-doped Pr2NiO4, Solid State Ionics, 2018, vol. 317, p. 234. https://doi.org/10.1016/j.ssi.2018.01.035

    Article  CAS  Google Scholar 

  50. Sadykov, V., Mezentseva, N.V., Alikina, G.M., Lukashevich, A.I., Borchert, Y.V., Kuznetsova, T.G., Ivanov, V.P., Trukhan, S.N., Paukshtis, E.A., Muzykantov, V.S., Kuznetsov, V.L., Rogov, V.A., Ross, J.R.H., Kemnitz, E., and Mirodatos, C., Pt-supported nanocrystalline ceria-zirconia doped with La, Pr or Gd: Factors controlling syngas generation in partial oxidation/autothermal reforming of methane or oxygenates, Solid State Phenom., 2007, vol. 128, p. 239. 10.4028/www.scientific.net/SSP.128.239

    Article  CAS  Google Scholar 

  51. Sadykov, V.A., Kuznetsova, T.G., Frolova-Borchert, Y.V., Alikina, G.M., Lukashevich, A.I., Rogov, V.A., Muzykantov, V.S., Pinaeva, L.G., Sadovskaya, E.M., Ivanova, Y.A., Paukshtis, E.A., Mezentseva, N.V., Batuev, L.C., Parmon, V.N., Neophytides, S., Kemnitz, E., Scheurell, K., Mirodatos, C., and van Veen, A.C., Fuel-rich methane combustion: Role of the Pt dispersion and oxygen mobility in a fluorite-like complex oxide support, Catal. Today. 2006, vol. 117, p. 475. https://doi.org/10.1016/j.cattod.2006.06.017

    Article  CAS  Google Scholar 

  52. Porotnikova, N.M., Ananyev, M.V., Eremin, V.A., Molchanova, N.G., and Kurumchin, E.K., Effect of acceptor substitution in perovskites La1 – xAxMnO3 ± δ (A = Ca, Sr, Ba) on the kinetics of interaction of gas-phase oxygen, Russ. J. Electrochem., 2016, vol. 52, no. 8, p. 717.

    Article  CAS  Google Scholar 

  53. Porotnikova, N.M., Eremin, V.A., Farlenkov, A.S., Kurumchin, E.Kh., Sherstobitova, E.A., Kochubey, D.I., and Ananyev, M.V. Effect of AO segregation on catalytical activity of La0.7A0.3MnO3 ± δ (A = Ca, Sr, Ba) regarding oxygen reduction reaction, Catal. Lett., 2018, vol. 148, no. 9, p. 2839.

    Article  CAS  Google Scholar 

  54. Sadykov, V.A., Kuznetsova, T.G., Simakov, A.V., Rogov, V.A., Zaikovskii, V.I., Moroz, E.M., Kochubei, D.I., Novgorodov, B.N., Ivanov, V.P., Trukhan, S.N., Litvak, G.S., Bulgakov, N.N., Lunin, V.V., and Kemnitz, E., Effect of lanthanum manganite modification by calcium and/or fluorine on the bonding strength, mobility and reactivity of the lattice and surface oxygen, MRS Proc., 2002, vol. 751, p. Z3.27.1. https://doi.org/10.1557/PROC-751-Z3.27

  55. Sadykov, V.A., Bulgakov, N.N., Muzykantov, V.S., Kuznetsova, T.G., Alikina, G.M., Lukashevich, A.I., Potapova, Y.V., Rogov, V.A., Burgina, E.B., Zaikovskii, V.I., Moroz, E.M., Litvak, G.S., Yakovleva, I.S., Isupova, L.A., Zyryanov, V.V., Kemnitz, E., and Neophytides, S., Mobility and reactivity of the surface and lattice oxygen of some complex oxides with perovskite structure, in Mixed Ionic Electronic Conducting Perovskites for Advanced Energy Systems,: Orlovskaya, N., Browning, N., Eds., Dordrecht: Springer Netherlands, 2004, p. 53. https://doi.org/10.1007/978-1-4020-2349-1_5

    Google Scholar 

  56. Isupova, L.A., Tsybulya, S.V., Kryukova, G.N., Alikina, G.M., Boldyreva, N.N., Yakovleva, I.S., Ivanov, V.P., and Sadykov, V.A., Real structure and catalytic activity of La1 – xCaxMnO3 + δ perovskites, Solid State Ionics, 2001, vol. 141‑142, p. 417. https://doi.org/10.1016/S0167-2738(01)00737-8

    Article  Google Scholar 

  57. Goldberg, E., Nemudry, A., Boldyrev, V., and Schöllhorn, R., Model for anomalous transport of oxygen in nonstoichiometric perovskites. 1. General formulation of the problem, Solid State Ionics, 1998, vol. 110, p. 223. https://doi.org/10.1016/S0167-2738(98)00149-0

    Article  CAS  Google Scholar 

  58. Goldberg, E., Nemudry, A., Boldyrev, V., and Schöllhorn, R., Model for anomalous transport of oxygen in nonstoichiometric perovskites. 2. Analytical and numerical solutions, Solid State Ionics, 1999, vol. 122, p. 17.https://doi.org/10.1016/S0167-2738(98)00553-0

    Article  CAS  Google Scholar 

  59. Nemudry, A., Rogachev, A., Gainutdinov, I., and Schöllhorn, R., Reactivity of the perovskite system Ca1 – xSrxFeO2.5 + y in the topotactic electrochemical oxidation at ambient temperature, J. Solid State Electrochem., 2001, vol. 5, p. 450. https://doi.org/10.1007/s100080000188

    Article  CAS  Google Scholar 

  60. Nemudry, A., Goldberg, E.L., Aguirre, M., and Alario-Franco, M.Á., Electrochemical topotactic oxidation of nonstoichiometric perovskites at ambient temperature, Solid State Sci., 2002, vol. 4, p. 677.https://doi.org/10.1016/S1293-2558(02)01313-4

    Article  CAS  Google Scholar 

  61. Nemudry, A. and Uvarov, N., Nanostructuring in composites and grossly nonstoichiometric or heavily doped oxides, Solid State Ionics, 2006, vol. 177, p. 2491. https://doi.org/10.1016/j.ssi.2006.05.002

    Article  CAS  Google Scholar 

  62. Zhogin, I.L., Nemudry, A.P., Glyanenko, P.V., Kamenetsky, Yu.M., Bouwmeester, H.J.M., and Ismagilov, Z.R., Oxygen diffusion in nanostructured perovskites, Cat. Today, 2006, vol. 118, p. 151. https://doi.org/10.1016/j.cattod.2006.02.088

    Article  CAS  Google Scholar 

  63. Sadykov, V., Alikina, G., Lukashevich, A., Muzykantov, V., Usoltsev, V., Boronin, A., Koscheev, S., Krieger, T., Ishchenko, A., Smirnova, A., Bobrenok, O., and Uvarov, N., Design and characterization of LSM/ScCeSZ nanocomposite as mixed ionic–electronic conducting material for functionally graded cathodes of solid oxide fuel cells, Solid State Ionics, 2011, vol. 192, p. 540. https://doi.org/10.1016/j.ssi.2010.08.015

    Article  CAS  Google Scholar 

  64. Sadykov, V., Mezentseva, N., Usoltsev, V., Sadovskaya, E., Ishchenko, A., Pavlova, S., Bespalko, Y., Kharlamova, T., Zevak, E., Salanov, A., Krieger, T., Belyaev, V., Bobrenok, O., Uvarov, N., Okhlupin, Y., Smorygo, O., Smirnova, A., Singh, P., Vlasov, A., Korobeynikov, M., Bryazgin, A., Kalinin, P., and Arzhannikov, A., Solid oxide fuel cell composite cathodes based on perovskite and fluorite structures, J. Power Sources, 2011, vol. 196, p. 7104. https://doi.org/10.1016/j.jpowsour.2010.07.096

    Article  CAS  Google Scholar 

  65. Sadykov, V., Kharlamova, T., Batuev, L., Mezentseva, N., Alikina, G., Muzykantov, V., Krieger, T., Pavlova, S., Zaikovskii, V., Ishchenko, A., Zarubina, V., Rogov, V., Bobrenok, O., Uvarov, N., Kilner, J., Druce, J., and Smirnova, A. Design and characterization of nanocomposites based on complex perovskites and doped ceria as advanced materials for solid oxide fuel cell cathodes and membranes, MRS Proc., 2008, vol. 1098, p. 1098-HH07-06. https://doi.org/10.1557/PROC-1098-HH07-06

  66. Sadykov, V.A., Eremeev, N.F., Sadovskaya, E.M., Bobin, A.S., Fedorova, Y.E., Muzykantov, V.S., Mezentseva, N.V., Alikina, G.M., Kriger, T.A., Belyaev, V.D., Rogov, V.A., Ulikhin, A.S., Okhlupin, Y.S., Uvarov, N.F., Bobrenok, O.F., McDonald, N., Watton, J., Dhir, A., Steinberger-Wilckens, R., Mertens, J., and Vinke, I.C., Cathodic materials for intermediate-temperature solid oxide fuel cells based on praseodymium nickelates-cobaltites, Russ. J. Electrochem., 2014, vol. 50, no. 7, p. 669. https://doi.org/10.1134/S1023193514070131

    Article  CAS  Google Scholar 

  67. Sadykov, V., Eremeev, N., Alikina, G., Sadovskaya, E., Muzykantov, V., Pelipenko, V., Bobin, A., Krieger, T., Belyaev, V., Ivanov, V., Ishchenko, A., Rogov, V., Ulihin, A., Uvarov, N., Okhlupin, Y., Mertens, J., and Vinke, I., Oxygen mobility and surface reactivity of P-rNi1 – xCoxO3 + δ–Ce0.9Y0.1O2 – δ cathode nanocomposites, Solid State Ionics, 2014, vol. 262, p. 707. https://doi.org/10.1016/j.ssi.2014.01.020

    Article  CAS  Google Scholar 

  68. Sadykov, V., Eremeev, N., Sadovskaya, E., Bobin, A., Ishchenko, A., Pelipenko, V., Muzykantov, V., Krieger, T., and Amanbaeva, D., Oxygen mobility and surface reactivity of PrNi1 − xCoxO3 − δ perovskites and their nanocomposites with Ce0.9Y0.1O2 − δ by temperature-programmed isotope exchange experiments, Solid State Ionics, 2015, vol. 273, p. 35. https://doi.org/10.1016/j.ssi.2014.11.021

    Article  CAS  Google Scholar 

  69. Sadykov, V.A., Eremeev, N.F., Bolotov, V.A., Tanashev, Y.Y., Fedorova, Y.E., Amanbayeva, D.G., Bobin, A.S., Sadovskaya, E.M., Muzykantov, V.S., Pelipenko, V.V., Lukashevich, A.I., Krieger, T.A., Ishchenko, A.V., and Smirnova, A.L., The effect of microwave sintering on stability and oxygen mobility of praseodymium nickelates-cobaltites and their nanocomposites, Solid State Ionics, 2016, vol. 288, p. 76.https://doi.org/10.1016/j.ssi.2016.02.003

    Article  CAS  Google Scholar 

  70. Sadykov, V.A., Eremeev, N.F., Vinokurov, Z.S., Shmakov, A.N., Kriventsov, V.V., Lukashevich, A.I., Krasnov, A.V., and Ishchenko, A.V., Structural studies of Pr nickelate-cobaltite – Y-doped ceria nanocomposite, J. Ceram. Sci. Technol., 2017, vol. 8, p. 129.https://doi.org/10.4416/JCST2016-0009

    Article  Google Scholar 

  71. Sadykov, V.A., Pavlova, S.N., Vinokurov, Z.S., Shmakov, A.N., Eremeev, N.F., Fedorova, Y.E., Yakimchuk, E.P., Kriventsov, V.V., Bolotov, V.A., Tanashev, Y.Y., Sadovskaya, E.M., Cherepanova, S.V., and Zolotarev, K.V., Application of SR methods for the study of nanocomposite materials for hydrogen energy, Phys. Procedia, 2016, vol. 84, p. 397. https://doi.org/10.1016/j.phpro.2016.11.068

    Article  CAS  Google Scholar 

  72. Amow, G., Davidson, I.J., and Skinner, S.J., A comparative study of the Ruddlesden-Popper series, Lan + 1NinO3n + 1 (n = 1, 2 and 3), for fuel-cell cathode applications, Solid State Ionics, 2006, vol. 177, p. 1205. https://doi.org/10.1016/J.SSI.2006.05.005

    Article  CAS  Google Scholar 

  73. Geffroy, P.-M., Reichmann, M., Chartier, T., Bassat, J.-M., and Grenier, J.-C., Evaluating oxygen diffusion, surface exchange and oxygen semi-permeation in Ln2NiO4 + δ membranes (Ln = La, Pr and Nd), J. Memb. Sci., 2014, vol. 451, p. 234–242. https://doi.org/10.1016/J.MEMSCI.2013.08.035

    Article  CAS  Google Scholar 

  74. Porotnikova, N.M., Khodimchuk, A.V., Ananyev, M.V., Eremin, V.A., Tropin, E.S., Farlenkov, A.S., Pikalova, E.Y., and Fetisov, A.V., Oxygen isotope exchange in praseodymium nickelate, J. Solid State Electrochem., 2018, vol. 22, no. 7, p. 2115.

    Article  CAS  Google Scholar 

  75. Tropin, E.S., Ananyev, M.V., Farlenkov, A.S., Khodimchuk, A.V., Berenov, A.V., Fetisov, A.V., Eremin, V.A., and Kolchugin, A.A., Surface defect chemistry and oxygen exchange kinetics in La2 – xCaxNiO4 + δ, J. Solid State Chem., 2018, vol. 262, p. 199.

    Article  CAS  Google Scholar 

  76. Sadykov, V.A., Sadovskaya, E.M., Pikalova, E.Y., Kolchugin, A.A., Filonova, E.A., Pikalov, S.M., Eremeev, N.F., Ishchenko, A.V., Lukashevich, A.I., and Bassat, J.M., Transport features in layered nickelates: correlation between structure, oxygen diffusion, electrical and electrochemical properties, Ionics, 2018, vol. 24, p. 1181. https://doi.org/10.1007/s11581-017-2279-3

    Article  CAS  Google Scholar 

  77. Sadykov, V.A., Pikalova, E.Y., Kolchugin, A.A., Fetisov, A.V., Sadovskaya, E.M., Filonova, E.A., Eremeev, N.F., Goncharov, V.B., Krasnov, A.V., Skriabin, P.I., Shmakov, A.N., Vinokurov, Z.S., Ishchenko, A.V., and Pikalov, S.M., Transport properties of Ca-doped Ln2NiO4 for intermediate temperature solid oxide fuel cells cathodes and catalytic membranes for hydrogen production, Int. J. Hydrogen Energy, 2019 (In press). https://doi.org/10.1016/j.ijhydene.2018.03.039

  78. Pikalova, E., Kolchugin, A., Bogdanovich, N., Medvedev, D., Lyagaeva, J., Vedmid’, L., Ananyev, M., Plaksin, S., and Farlenkov, A., Suitability of Pr2 ‒ xCaxNiO4 + δ as cathode materials for electrochemical devices based on oxygen ion and proton conducting solid state electrolytes, Int. J. Hydrogen Energy, 2019 (In press). https://doi.org/10.1016/J.IJHYDENE.2018.06.023

  79. Li, X. and Benedek, N.A., Enhancement of ionic transport in complex oxides through soft lattice modes and epitaxial strain, Chem. Mater., 2015, vol. 27, p. 2647. https://doi.org/10.1021/acs.chemmater.5b00445

    Article  CAS  Google Scholar 

  80. Sadykov, V.A., Eremeev, N.F., Usol’tsev, V.V., Bobin, A.S., Alikina, G.M., Pelipenko, V.V., Sadovskaya, E.M., Muzykantov, V.S., Bulgakov, N.N., and Uvarov, N.F., Mechanism of oxygen transport in layered lanthanide nickelates Ln2 – xNiO4 + δ (Ln = La, Pr) and their nanocomposites with Ce0.9Gd0.1O2 – δ and Y2(Ti0.8Zr0.2)1.6Mn0.4O7 − δ solid electrolytes, Russ. J. Electrochem., 2013, vol. 49, no. 7, p. 645.https://doi.org/10.1134/S1023193513070136

    Article  CAS  Google Scholar 

  81. Pikalova, E.Yu., Medvedev, D.A., and Khasanov, A.F., Structure, stability and thermo-mechanical properties of Ca-substituted Pr2NiO4 + δ, Phys. Solid State, 2017, vol. 59, p. 679. https://doi.org/10.1134/S1063783417040187

    Article  Google Scholar 

  82. Pikalova, E.Y., Sadykov, V.A., Filonova, E.A., Eremeev, N.F., Sadovskaya, E.M., Bogdanovich, N.M., Kolchugin, A.A., Lyagaeva, J.G., Goncharov, V.B., Vedmid’, L.B., and Ishchenko, A.V., Transport properties and electrode performance of Ca-substituted Nd2NiO4, Proceeding of SEEP2018, Paisley, UK, 2018, vol. 3, p. 379.

  83. Pikalova, E.Y., Sadykov, V.A., Filonova, E.A., Eremeev, N.F., Sadovskaya, E.M., Bogdanovich, N.M., Kolchugin, A.A., Lyagaeva, J.G., Vedmid’, L.B., Ishchenko, A.V., and Goncharov, V.B., Structure, oxygen transport properties and electrode performance of Ca substituted Nd2NiO4, Solid State Ionics, 2019, vol. 335, p. 53. https://doi.org/10.1016/j.ssi.2019.02.012

    Article  CAS  Google Scholar 

  84. Atkinson, A., Barnett, S., Gorte, R.J., Irvine, J.T.S., McEvoy, A.J., Mogensen, M., Singhal, S.C., and Vohs, J., Advanced anodes for high-temperature fuel cells, Nat. Mater., 2004, vol. 3, p. 17.https://doi.org/10.1038/nmat1040

    Article  CAS  PubMed  Google Scholar 

  85. Sadykov, V., Bobrova, L., Pavlova, S., Simagina, V., Makarshin, L., Parmon, V., Ross, J.R., van Veen, A.C., and Mirodatos, C., Syngas generation from hydrocarbons and oxygenates with structured catalysts, in Syngas: Production Methods, Post Treatment and Economics, Kurucz, A. and Bencik, I., Eds, New York: Nova Science Publishers, 2009, p. 530.

    Google Scholar 

  86. Sadykov, V., Mezentseva, N., Alikina, G., Bunina, R., Rogov, V., Krieger, T., Belochapkine, S., and Ross, J., Composite catalytic materials for steam reforming of methane and oxygenates: Combinatorial synthesis, characterization and performance, Catal. Today, 2009, vol. 145, p. 127. https://doi.org/10.1016/j.cattod.2008.04.034

    Article  CAS  Google Scholar 

  87. Yaseneva, P., Pavlova, S., Sadykov, V., Alikina, G., Lukashevich, A., Rogov, V., Belochapkine, S., and Ross, J., Combinatorial approach to the preparation and characterization of catalysts for biomass steam reforming into syngas, Catal. Today, 2008, vol. 137, p. 23. https://doi.org/10.1016/j.cattod.2008.03.016

    Article  CAS  Google Scholar 

  88. Souza, M.M.V. and Schmal, M., Combination of carbon dioxide reforming and partial oxidation of methane over supported platinum catalysts, Appl. Catal. A Gen., 2003, vol. 255, p. 83. https://doi.org/10.1016/S0926-860X(03)00646-X

    Article  CAS  Google Scholar 

  89. Sadykov, V., Mezentseva, N., Pelipenko, V., Smorygo, O., and Rietveld, B., Anode materials for IT SOFC based on NiO/YSZ doped with complex oxides and promoted by Pt, Ru or Pd: Properties and catalytic activity in the steam reforming of CH4, Fuel Cells A Sustain. World, Proc. 8th Eur. SOFC Forum, June 30–July 4, 2008, Lucerne, Switzerland, 2008, p. 1.

  90. Sadykov, V., Mezentseva, N., Alikina, G., Lukashevich, A., Muzykantov, V., Bunina, R., Boronin, A., Pazhetnov, E., Paukshtis, E., Kriventsov, V., Smirnova, A., Vasylyev, O., Irvine, J., Bobrenok, O., Voronin, V., and Berger, I., Doped Nanocrystalline Pt-promoted ceria-zirconia as anode catalysts for IT SOFC: Synthesis and properties, MRS Proc., 2007, vol. 1023, p. 1023–JJ02-07. https://doi.org/10.1557/PROC-1023-JJ02-07

  91. Sadykov, V.A., Kriventsov, V.V., Moroz, E.M., Borchert, Y.V., Zyuzin, D.A., Kol’ko, V.P., Kuznetsova, T.G., Ivanov, V.P., Trukhan, S.N., Boronin, A.I., Pazhetnov, E.M., Mezentseva, N.V., Burgina, E.B., and Ross, J.R.H., Ceria-zirconia nanoparticles doped with La or Gd: Effect of the doping cation on the real structure, Solid State Phenom., 2007, vol. 128, p. 81. 10.4028/www.scientific.net/SSP.128.81

    Article  CAS  Google Scholar 

  92. Sadykov, V., Borchert, Y., Alikina, G., Lukashevich, A., Bunina, R., Zabolotnaya, G., Mezentseva, N., Moroz, E., Zaikovskii, V., Zyuzin, D., Uvarov, N., Zyryanov, V., and Orlovskaya, N., One-pot synthesis of mixed ionic-electronic conducting nanocomposites comprised of fluorite-like and perovskite-like phas es as catalytic materials for SOFC, Mater. Res. Soc. Symp. Proc., 2006, vol. 900E, p. O10.08.1‑6.

  93. Sadykov, V.A., Mezentseva, N., Alikina, G., Lukashevich, A., Muzykantov, V., Kuznetsova, T., Batuev, L., Fedotov, M., Moroz, E., Zyuzin, D., Kolko, V., Kriventsov, V., Ivanov, V., Boronin, A., Pazhetnov, E., Zaikovskii, V., Ishchenko, A., Rogov, V., Ross, J., and Kemnitz, E., Nanocrystalline doped ceria-zirconia fluorite-like solid solutions promoted by Pt: Structure, surface properties and catalytic performance in syngas generation, MRS Online Proc. Libr. Arch., 2006, vol. 988, p. 0988-QQ06-04.1. https://doi.org/10.1557/PROC-988-0988-QQ06-04

  94. Lei, Z. and Zhu, Q., Low temperature processing of dense nanocrystalline scandia-doped zirconia (ScSZ) ceramics, Solid State Ionics, 2005, vol. 176, p. 2791.https://doi.org/10.1016/J.SSI.2005.09.005

    Article  CAS  Google Scholar 

  95. Smirnova, A., Sadykov, V., Muzykantov, V., Mezentseva, N., Ivanov, V., Zaikovskii, V., Ishchenko, A., Sammes, N., Vasylyev, O., Kilner, J., Irvine, J., Vereschak, V., Kosacki, I., Uvarov, N., and Zyryanov, V., Scandia–stabilized zirconia: Effect of dopants on surface/grain boundary segregation and transport properties, Mater. Res. Soc. Symp. Proc., 2007, vol. 972, p. AA10-05.https://doi.org/10.1557/PROC-0972-AA10-05

    Article  Google Scholar 

  96. Sammes, N. and Du, Y., Intermediate-temperature SOFC electrolytes, in Fuel Cell Technologies: State and Perspectives, Sammes, N., Smirnova, A. and Vasylyev, O., Eds, Berlin/Heidelberg: Springer-Verlag, 2005, p. 19–34. https://doi.org/10.1007/1-4020-3498-9_3

    Book  Google Scholar 

  97. Inaba, H. and Tagawa, H., Ceria-based solid electrolytes, Solid State Ionics, 1996, vol. 83, p. 1. https://doi.org/10.1016/0167-2738(95)00229-4

    Article  CAS  Google Scholar 

  98. Sadykov, V.A., Frolova, Y.V., Alikina, G.M., Lukashevich, A.I., Muzykantov, V.S., Rogov, V.A., Moroz, E.M., Zyuzin, D.A., Ivanov, V.P., Borchert, H., Paukshtis, E.A., Bukhtiyarov, V.I., Kaichev, V.V., Neophytides, S., Kemnitz, E., and Scheurell, K., Mobility and reactivity of lattice oxygen in Gd-doped ceria promoted by Pt, React. Kinet. Catal. Lett., 2005, vol. 85, p. 367. https://doi.org/10.1007/s11144-005-0287-1

    Article  CAS  Google Scholar 

  99. Ito, Y., Lei, Y., Browning, N.D., and Mazanec, T.J., Analysis of the atomic-scale defect chemistry at interfaces in fluorite structured oxides by electron energy loss spectroscopy, MRS Proc., 2001, vol. 70, p. V11.10. https://doi.org/10.1557/PROC-703-V11.10

  100. Sadykov, V.A., Frolova, Y.V., Kriventsov, V.V., Kochubei, D.I., Moroz, E.M., Zyuzin, D.A., Potapova, Y.V., Muzykantov, V.S., Zaikovskii, V.I., Burgina, E.B., Borchert, H., Trukhan, S., Ivanov, V.P., Neophytides, S., Kemnitz, E., and Scheurell, K., Specificity of the local structure of nanocrystalline doped ceria solid electrolytes, MRS Proc., 2004, vol. 835, p. K3.6. https://doi.org/10.1557/PROC-835-K3.6

  101. Wachsman, E.D., Jayaweera, P., Jiang, N., Lowe, D.M., and Pound, B.G., Stable high conductivity ceria/bismuth oxide bilayered electrolytes, J. Electrochem. Soc., 1997, vol. 144, p. 233. https://doi.org/10.1149/1.1837390

    Article  CAS  Google Scholar 

  102. Sadykov, V.A., Kuznetsova, T.G., Veniaminov, S.A., Kochubey, D.I., Novgorodov, B.N., Burgina, E.B., Moroz, E.M., Paukshtis, E.A., Ivanov, V.P., Trukhan, S.N., Beloshapkin, S.A., Potapova, Y.V., Lunin, V.V., Kemnitz, E., and Aboukais, A., Cation/anion modified ceria-zirconia solid solutions promoted by pt as catalysts of methane oxidation into syngas by water in reversible redox cycles, React. Kinet. Catal. Lett., 2002, vol. 76, p. 83–92. https://doi.org/10.1023/A:1015617512304

    Article  CAS  Google Scholar 

  103. Kendrick, E., Islam, M.S., and Slater, P.R., Developing apatites for solid oxide fuel cells: insight into structural, transport and doping properties, J. Solid State Chem., 2007, vol. 17, p. 3104. .https://doi.org/10.1039/B704426G

    Article  CAS  Google Scholar 

  104. Kharlamova, T., Pavlova, S., Sadykov, V.A., Krieger, T., Batuev, L., Muzykantov, V., Lapina, O., Khabibulin, D., Chaikina, M., Uvarov, N., Pavlukhin, Y., Petrov, S., and Argirusis, C., Doped apatite type lanthanum silicates: Structure and property characterization, MRS Proc., 2008, vol. 1126, p. 1126-S11-04. https://doi.org/10.1557/PROC-1126-S11-04

  105. Tolchard, J.R., Islam, M.S., and Slater, P.R., Defect chemistry and oxygen ion migration in the apatite-type materials La9.33Si6O26 and La8Sr2Si6O26, J. Mater. Chem., 2003, vol. 13, p. 1956.https://doi.org/10.1039/b302748c

    Article  CAS  Google Scholar 

  106. Sadykov, V., Kharlamova, T., Pavlova, S., Muzykantov, V., Ishchenko, A., Krieger, T., Lapina, O., Uvarov, N., Chaikina, M., Pavlyukhin, Y., Argirusis, C., Bebelis, S., Gasparyan, H., Stathopoulos, V., Jothinathan, E., and Van der Biest, O., Doped lanthanum silicates with the apatite structure as oxide-ion conducting electrolytes: synthesis, characterization and application for design of intermediate temperature solid oxide fuel cell, in Lanthanum: Compounds, Production and Applications, Moore, R.J., Ed., New York: Nova Science Publishers, Inc., 2010, p. 1–126.

    Google Scholar 

  107. Lacorre, P., Goutenoire, F., Bohnke, O., Retoux, R., and Laligant, Y., Designing fast oxide-ion conductors based on La2Mo2O9, Nature, 2000, vol. 404, p. 856. https://doi.org/10.1038/35009069

    Article  CAS  PubMed  Google Scholar 

  108. Georges, S., Goutenoire, F., Bohnke, O., Steil, M.C., Skinner, S.J., Wiemhofer, H.D., and Lacorre, P., The LAMOX family of fast oxide-ion conductors: Overview and recent results, J. New Mater. Electrochem. Syst., 2004, vol. 7, p. 51.

    CAS  Google Scholar 

  109. Pavlova, S., Bespalko, Y., Krieger, T., Sadykov, V., and Uvarov, N., Genesis, structural, and transport properties of La2Mo2 – xWxO9 prepared via mechanochemical activation, Ionics, 2017, vol. 23, p. 877. https://doi.org/10.1007/s11581-016-1869-9

    Article  CAS  Google Scholar 

  110. Pavlova, S., Kharlamova, T., Bespalko, Y., Krieger, T., Sadykov, V., Chesalov, Y., Ulihin, A., Uvarov, N., and Smirnova, A., Low-temperature synthesis, structural and transport properties of doped LAMOX – electrolytes for IT SOFS, ECS Trans., 2013, vol. 57, p. 939. https://doi.org/10.1149/05701.0939ecst

    Article  CAS  Google Scholar 

  111. Pavlova, S., Bespalko, Y., Sadykov, V., Eremeev, N., Krieger, T., Sadovskaya, E., Ishchenko, A., Bobin, A., Ulihin, A., Uvarov, N., and Smirnova, A., Structural and transport properties of doped LAMOX – Electrolytes for IT SOFC, Solid State Ionics, 2015, vol. 288, p. 103. https://doi.org/10.1016/j.ssi.2016.01.026

    Article  CAS  Google Scholar 

  112. Lacorre, P., Selmi, A., Corbel, G., and Boulard, B., On the flexibility of the structural framework of cubic LAMOX compounds, in relationship with their anionic conduction properties, Inorg. Chem., 2005, vol. 45, p. 627. https://doi.org/10.1021/IC0513080

    Article  Google Scholar 

  113. Xing, W., Syvertsen, G.E., Grande, T., Li, Z., and Haugsrud, R., Hydrogen permeation, transport properties and microstructure of Ca-doped LaNbO4 and LaNb3O9 composites, J. Memb. Sci., 2012, vol. 415, p. 878. https://doi.org/10.1016/j.memsci.2012.06.008

    Article  CAS  Google Scholar 

  114. Haugsrud, R. and Norby, T., Proton conduction in rare-earth ortho-niobates and ortho-tantalates, Nat. Mater., 2006, vol. 5, p. 193–196. https://doi.org/10.1038/nmat1591

    Article  CAS  Google Scholar 

  115. Sadykov, V.A., Bespalko, Y.N., Krasnov, A.V., Skriabin, P.I., Lukashevich, A.I., Fedorova, Y.E., Sadovskaya, E.M., Eremeev, N.F., Krieger, T.A., Ishchenko, A.V., Belyaev, V.D., Uvarov, N.F., Ulihin, A.S., and Skovorodin, I.N., Novel proton-conducting nanocomposites for hydrogen separation membranes, Solid State Ionics, 2018, vol. 322, p. 69. https://doi.org/10.1016/j.ssi.2018.05.003

    Article  CAS  Google Scholar 

  116. Brandão, A.D., Gracio, J., Mather, C.C., Kharton, V.V., and Fagg, D.P., B-site substitutions in LaNb1 – xMxO4 – δ materials in the search for potential proton conductors (M = Ga, Ge, Si, B, Ti, Zr, P, Al), J. Solid State Chem., 2011, vol. 184, p. 863. https://doi.org/10.1016/j.jssc.2011.02.012

    Article  CAS  Google Scholar 

  117. Haugsrud, R. and Risberg, T., Protons in acceptor-doped La3NbO7 and La3TaO7, J. Electrochem. Soc., 2009, vol. 156, p. B425. https://doi.org/10.1149/1.3068397

    Article  CAS  Google Scholar 

  118. Wood, J.R., Master Thesis, University of Oslo, 2007.

  119. Syvertsen, G.E., Estournès, C., Fjeld, H., Haugsrud, R., Einarsrud, M.-A., and Grande, T., Spark plasma sintering and hot pressing of hetero-doped LaNbO4, J. Am. Ceram. Soc., 2012, vol. 95, p. 1563. https://doi.org/10.1111/j.1551-2916.2012.05101.x

    Article  CAS  Google Scholar 

  120. Shimura, T., Fujimoto, S., and Iwahara, H., Proton conduction in non-perovskite-type oxides at elevated temperatures, Solid State Ionics, 2001, vol. 143, p. 117. https://doi.org/10.1016/S0167-2738(01)00839-6

    Article  CAS  Google Scholar 

  121. Magrasó, A., Frontera, C., Marrero-López, D., and Núñez, P., New crystal structure and characterization of lanthanum tungstate “La6WO12” prepared by freeze-drying synthesis, Dalt. Trans., 2009, vol. 46, p. 10273. https://doi.org/10.1039/b916981b

    Article  CAS  Google Scholar 

  122. Seeger, J., Ivanova, M.E., Meulenberg, W.A., Sebold, D., Stöver, D., Scherb, T., Schumacher, G., Escolástico, S., Solís, C., and Serra, J.M., Synthesis and Characterization of Nonsubstituted and Substituted Proton-Conducting La6 – xWO12 – y , Inorg. Chem., 2013, vol. 52, p. 10375. https://doi.org/10.1021/ic401104m

    Article  CAS  PubMed  Google Scholar 

  123. Escolástico, S., Schroeder, M., and Serra, J.M., Optimization of the mixed protonic–electronic conducting materials based on (Nd5/6Ln1/6)5.5WO11.25 − δ, J. Mater. Chem. A., 2014, vol. 2, p. 6616. https://doi.org/10.1039/c3ta14324d

    Article  CAS  Google Scholar 

  124. Savvin, S.N., Shlyakhtina, A.V., Kolbanev, I.V., Knotko, A.V., Belov, D.A., Shcherbakova, L.G., and Nuñez, P., Zr-doped samarium molybdates – potential mixed electron–proton conductors, Solid State Ionics, 2014, vol. 262, p. 713. https://doi.org/10.1016/J.SSI.2014.01.031

    Article  CAS  Google Scholar 

  125. Savvin, S.N., Shlyakhtina, A.V., Borunova, A.B., Shcherbakova, L.G., Ruiz-Morales, J.C., and Núñez, P., Crystal structure and proton conductivity of some Zr-doped rare-earth molybdates, Solid State Ionics, 2015, vol. 271, p. 91. https://doi.org/10.1016/J.SSI.2014.12.003

    Article  CAS  Google Scholar 

  126. Shlyakhtina, A.V., Savvin, S.N., Knotko, A.V., Shcherbakova, L.G., and Núñez, P., Electrical conductivity of Ln6 – xZrxMoO12 + δ (Ln = La, Nd, Sm; x = 0.2, 0.6) ceramics during thermal cycling, Inorg. Mater., 2016, vol. 52, p. 1055. https://doi.org/10.1134/S0020168516100149

    Article  CAS  Google Scholar 

  127. Shlyakhtina, A.V., Savvin, S.N., Lyskov, N.V., Belov, D.A., Shchegolikhin, A.N., Kolbanev, I.V., Karyagina, O.K., Chernyak, S.A., Shcherbakova, L.G., and Núñez, P., Sm6 – xMoO12 – δ (x = 0, 0.5) and Sm6WO12 – Mixed electron-proton conducting materials, Solid State Ionics, 2017, vol. 302, p. 143. https://doi.org/10.1016/j.ssi.2017.01.020

    Article  CAS  Google Scholar 

  128. Norby, T., A Kröger-Vink compatible notation for defects in inherently defective sublattices, J. Korean Ceram. Soc., 2010, vol. 47, p. 19. https://doi.org/10.4191/KCERS.2010.47.1.019

    Article  CAS  Google Scholar 

  129. Shlyakhtina, A.V., Savvin, S.N., Lyskov, N.V., Kolbanev, I.V., Karyagina, O.K., Chernyak, S.A., Shcherbakova, L.G., and Núñez, P., Polymorphism in the family of Ln6 – xMoO12 – δ (Ln = La, Gd–Lu; x = 0, 0.5) oxygen ion- and proton-conducting materials, J. Mater. Chem. A., 2017, vol. 5, p. 7618.https://doi.org/10.1039/C6TA09963G

    Article  CAS  Google Scholar 

  130. Shlyakhtina, A.V., Kolbanev, I.V., Degtyarev, E.N., Lyskov, N.V., Karyagina, O.K., Chernyak, S.A., and Shcherbakova, L.G., Kinetic aspects of the synthesis of Ln6 – xMoO12 – δ (Ln = Sm, Ho–Yb; x = 0, 0.5) rare-earth molybdates using mechanical activation of oxides, Solid State Ionics, 2018, vol. 320, p. 272. https://doi.org/10.1016/J.SSI.2018.02.004

    Article  CAS  Google Scholar 

  131. Savvin, S.N., Avdeev, M., Kolbanev, I.V., Kharitonova, E.P., Shcherbakova, L.G., Shlyakhtina, A.V., and Nuñez, P., Stability against reduction of fluorite-like rhombohedral La5.5MoO11.25 and Ho5.4Zr0.6MoO12.3 fluorite: Conductivity and neutron diffraction study, Solid State Ionics, 2018, vol. 319, p. 148.https://doi.org/10.1016/J.SSI.2018.02.001

    Article  CAS  Google Scholar 

  132. Foex, M., A family of refractory compounds-rare earths tungstates of type R6WO12, Bull. LA Soc. Chim. Fr., 1967, vol. 10, p. 3696.

    CAS  Google Scholar 

  133. Bespalko, Y., Sadykov, V., Eremeev, N., Skryabin, P., Krieger, T., Sadovskaya, E., Bobrova, L., Uvarov, N., Lukashevich, A., Krasnov, A., and Fedorova, Y., Synthesis of tungstates/Ni0.5Cu0.5O nanocomposite materials for hydrogen separation cermet membranes, Compos. Struct., 2018, vol. 202, p. 1263. https://doi.org/10.1016/J.COMPSTRUCT.2018.06.004

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors are grateful to the Organizers of the International Conference “Fundamental problems of solid state ionics” (Chernogolovka, Russia, September 9–13, 2018).

Funding

The reported study was funded in part by RSF (project no. 16-13-00112), the budget project for Boreskov Institute of Catalysis, Siberian Division of Russian Academy of Sciences (project no. АААА-А17-117041110045-9), Institute of High-Temperature Electrochemistry, Ural Division of Russian Academy of Sciences, and subsidized from the Governmental order of Semenov Institute of Chemical Physics, Russian Academy of Sciences (project no. 0052-2014-0011 “nanochemistry”, registration no. АААА-А17-111711600093 – 8), and also by RFBR (projects nos. 16-03-00143, 18-38-20063 mol_а_ved).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Sadykov or N. F. Eremeev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Based on the paper presented at the XIV Meeting “Fundamental Problems of Solid State Ionics,” Chernogolovka (Russia), September 9–13, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadykov, V.A., Sadovskaya, E.M., Eremeev, N.F. et al. Oxygen Mobility in the Materials for Solid Oxide Fuel Cells and Catalytic Membranes (Review). Russ J Electrochem 55, 701–718 (2019). https://doi.org/10.1134/S1023193519080147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519080147

Keywords:

Navigation