Skip to main content
Log in

Evolution of Anolyte Composition in the Oxidative Electrolysis of Sodium Bromide in a Sulfuric Acid Medium

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The oxidation of a 10 mM aqueous solution of sodium bromide in a sulfuric acid medium on the surface of a platinum electrode in a cell with separated spaces was studied. The process is important in view of the use of the bromine–bromide redox couple in redox flow batteries. The study was performed by cyclic voltammetry, potentiostatic chronoamperometry with optical absorption spectrum recording, and measurements of the potential of the redox reference electrode. A numerical procedure for processing the experimental spectra of the solution was developed to separate them into the spectrum of molecular bromine and the residual signal. The latter was attributed to the absorption of the tribromide anion based on the literature data. The experimental dependences of the Br2 and Br3- concentrations for the oxidative electrolysis of the NaBr solution in the sulfuric acid medium agreed well with the theoretical predictions. The current efficiency of bromine formation was evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alaee, M., et al., An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release, Environ. Int., 2003, vol. 29, no. 6, pp. 683–689.

    Article  CAS  PubMed  Google Scholar 

  2. Ristaino, J.B. and Thomas, W., Agriculture, methyl bromide, and the ozone hole: can we fill the gaps?, Plant Dis., 1997, vol. 81, no. 9, pp. 964–977.

    Article  PubMed  Google Scholar 

  3. Jenner, H.A., et al., Cooling water management in European power stations: biology and control of fouling, Paris: Electricite de France, 1998.

    Google Scholar 

  4. Tolmachev, Y.V., Hydrogen-halogen electrochemical cells: a review of applications and technologies, Russ. J. Electrochem., 2014, vol. 50, no. 4, pp. 301–316.

    Article  CAS  Google Scholar 

  5. Cho, K.T., Tucker, M.C., and Weber, A.Z., A review of hydrogen/halogen flow cells, Energy Technol., 2016, vol. 4, no. 6, pp. 655–678.

    Article  Google Scholar 

  6. Tolmachev, Y.V., et al., Energy cycle based on a high specific energy aqueous flow battery and its potential use for fully electric vehicles and for direct solar-tochemical energy conversion, J. Solid State Electrochem., 2015, vol. 19, no. 9, pp. 2711–2722.

    Article  CAS  Google Scholar 

  7. Vorotyntsev, M.A., Konev, D.V., and Tolmachev, Y.V., Electroreduction of halogen oxoanions via autocatalytic redox mediation by halide anions: novel EC" mechanism. Theory for stationary 1D regime, Electrochim. Acta, 2015, vol. 173, pp. 779–795.

    Article  CAS  Google Scholar 

  8. Modestov, A.D., et al., A Hydrogen-Bromate Flow Battery for Air-Deficient Environments, Energy Technol., 2018, vol. 6, no. 2, pp. 242–245.

    Article  CAS  Google Scholar 

  9. Kelsall, G.H., Welham, N.J., and Diaz, M.A., Thermodynamics of Cl–H2O, Br–H2O, I–H2O, Au–Cl–H2O, Au–Br–H2O and Au–I–H2O systems at 298K, J. Electroanal. Chem., 1993, vol. 361, nos. 1–2, pp. 13–24.

    CAS  Google Scholar 

  10. Huang, X., Gao, N., and Deng, Y., Bromate ion formation in dark chlorination and ultraviolet/chlorination processes for bromide-containing water, J. Environ. Sci., 2008, vol. 20, no. 2, pp. 246–251.

    Article  CAS  Google Scholar 

  11. Fang, J., et al., Bromate formation from the oxidation of bromide in the UV/chlorine process with low pressure and medium pressure UV lamps, Chemosphere, 2017, vol. 183, pp. 582–588.

    Article  CAS  PubMed  Google Scholar 

  12. Von Gunten, U. and Oliveras, Y., Advanced oxidation of bromide-containing waters: bromate formation mechanisms, Environ. Sci. Technol., 1998, vol. 32, no. 1, pp. 63–70.

    Article  Google Scholar 

  13. Ferro, S., The bromine electrode part III: reaction kinetics at highly boron-doped diamond electrodes, J. Appl. Electrochem., 2005, vol. 35, no. 3, pp. 279–283.

    Article  CAS  Google Scholar 

  14. Bergmann, M.E.H., Iourtchouk, T., and Rollin, J., The occurrence of bromate and perbromate on BDD anodes during electrolysis of aqueous systems containing bromide: first systematic experimental studies, J. Appl. Electrochem., 2011, vol. 41, no. 9, p. C. 1109.

    Google Scholar 

  15. Osuga, T. and Sugino, K., Electrolytic production of bromates, J. Electrochem. Soc., 1957, vol. 104, no. 7, pp. 448–451.

    Article  CAS  Google Scholar 

  16. Vacca, A., et al., On the formation of bromate and chlorate ions during electrolysis with boron doped diamond anode for seawater treatment, J. Chem. Technol. Biotechnol., 2013, vol. 88, no. 12, pp. 2244–2251.

    Article  CAS  Google Scholar 

  17. Cettou, P., Robertson, P.M., and Ibl, N., On the electrolysis of aqueous bromide solutions to bromate, Electrochim. Acta, 1984, vol. 29, no. 7, pp. 875–885.

    Article  CAS  Google Scholar 

  18. Pavlović, O.ŽZ., Krstajić, N.V., and Spasojević, M.D., Formation of bromates at a RuO2TiO2 titanium anode, Surf. Coat. Technol., 1988, vol. 34, no. 2, pp. 177–183.

    Google Scholar 

  19. Conway, B.E., Phillips, Y., and Qian, S.Y., Surface electrochemistry and kinetics of anodic bromine formation at platinum, J. Chem. Soc., Faraday Trans., 1995, vol. 91, no. 2, pp. 283–293.

    Article  CAS  Google Scholar 

  20. Ferro, S. and De Battisti, A., The bromine electrode. part i: adsorption phenomena at polycrystalline platinum electrodes, J. Appl. Electrochem., 2004, vol. 34, no. 10, pp. 981–987.

    Article  CAS  Google Scholar 

  21. Ferro, S., Orsan, C., and De Battisti, A., The bromine electrode. Part II: reaction kinetics at polycrystalline Pt, J. Appl. Electrochem., 2005, vol. 35, no. 3, pp. 273–278.

    Article  CAS  Google Scholar 

  22. Xu, J., Georgescu, N.S., and Scherson, D.A., The oxidation of bromide on platinum electrodes in aqueous acidic solutions: electrochemical and in situ spectroscopic studies, J. Electrochem. Soc., 2014, vol. 161, no. 6, pp. H392–H398.

    Google Scholar 

  23. Kshirsagar, G. and Field, R.J., A kinetic and thermodynamic study of component processes in the equilibrium 5HOBr = 2Br2 + + 2H2O + H+, J. Phys. Chem., 1988, vol. 92, no. 25, pp. 7074–7079.

    Article  CAS  Google Scholar 

  24. Chang, J., Bennett, B., and Bard, A.J., Detection of an unstable intermediate in Br–electro-oxidation to Br3–on a platinum electrode in nitrobenzene by scanning electrochemical microscopy, Electrochim. Acta, 2017, vol. 238, pp. 74–80.

    Article  CAS  Google Scholar 

  25. Allen, G.D., et al., A mechanistic study of the electrooxidation of bromide in acetonitrile and the room temperature ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide at platinum electrodes, J. Electroanal. Chem., 2005, vol. 575, no. 2, pp. 311–320.

    Article  CAS  Google Scholar 

  26. Konev, D.V., et al., In situ UV-visible spectroelectrochemistry in the course of oxidative monomer electrolysis, Electrochim. Acta, 2015, vol. 179, pp. 315–325.

    Article  CAS  Google Scholar 

  27. Michalowski, T., Calculation of pH and potential E for bromine aqueous solution, J. Chem. Educ., 1994, vol. 71, no. 7, p. 560.

    Article  CAS  Google Scholar 

  28. Clavilier, J., et al., Preparation of monocrystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the 111 and 110 planes, J. Electroanal. Chem. Interfacial Electrochem., 1980, vol. 107, no. 1, pp. 205–209.

    Article  CAS  Google Scholar 

  29. Johnson, D.C. and Bruckenstein, S., A Ring-Disk Study of HOBr formation at platinum electrodes in 1.0M H2SO4, J. Electrochem. Soc., 1970, vol. 117, no. 4, pp. 460–467.

    Article  CAS  Google Scholar 

  30. Beckwith, R.C., Characteristics of aqueous bromine and hypobromous acid and the kinetics and mechanism of the reaction of bromine and hydroxylamine, 1997.

    Google Scholar 

  31. Beckwith, R.C. and Margerum, D.W., Kinetics of hypobromous acid disproportionation, Inorg. Chem., 1997, vol. 36, no. 17, pp. 3754–3760.

    Article  CAS  PubMed  Google Scholar 

  32. Betts, R.H. and Mackenzie, A.N., Formation and stability of hypobromous acid in perchloric acid solutions of bromine and bromate ions, Can. J. Chem., 1951, vol. 29, no. 8, pp. 666–677.

    Article  CAS  Google Scholar 

  33. Citri, O. and Epstein, I.R., Systematic design of chemical oscillators. 43. Mechanistic study of a coupled chemical oscillator: the bromate-chlorite-iodide reaction, J. Phys. Chem., 1988, vol. 92, no. 7, pp. 1865–1871.

    Article  CAS  Google Scholar 

  34. Bard, A.J., Standard Potentials in Aqueous Solution, Routledge, 2017.

    Book  Google Scholar 

  35. Griffith, R.O., McKeown, A., and Winn, A.G., The bromine-bromide-tribromide equilibrium, Trans. Faraday Soc., 1932, vol. 28, pp. 101–107.

    Article  CAS  Google Scholar 

  36. Liebhafsky, H.A., The equilibrium constant of the bromine hydrolysis and its variation with temperature, J. Am. Chem. Soc., 1934, vol. 56, no. 7, pp. 1500–1505.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Konev.

Additional information

Original Russian Text © M.M. Petrov, P.A. Loktionov, D.V. Konev, A.E. Antipov, E.A. Astafiev, M.A. Vorotyntsev, 2019, published in Elektrokhimiya, 2019, Vol. 55, No. 1, pp. 95–105.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, M.M., Loktionov, P.A., Konev, D.V. et al. Evolution of Anolyte Composition in the Oxidative Electrolysis of Sodium Bromide in a Sulfuric Acid Medium. Russ J Electrochem 54, 1233–1242 (2018). https://doi.org/10.1134/S1023193518130335

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518130335

Keywords

Navigation