Skip to main content
Log in

Electrochemical machining of titanium. Review

  • Section 1. Mass and Charge Transfer
  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The problems of overcoming titanium passivity that hampers reaching high rates of its anodic dissolution, the optimization of electrolyte composition, and the mode of electrochemical machining (ECM) are considered. The anodic potentials of machining and the current efficiencies for titanium ionization reaction in relation to the anionic composition of electrolyte and the nature of solvent are presented. Some details of the mechanism of high-rate anodic dissolution of metal, which determine the main results of ECM, are considered. The examples of techniques of ECM of titanium and their biomedical and aircraft industry applications are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McGeough, J.A., Principles of electrochemical machining. London: Chapman and Hall, 1974, p. 255.

    Google Scholar 

  2. Electrochemical machining, De Barr, A.E. and Oliver, D.A., Eds., L.: Macdonald, 1968.

  3. Wilson, J.F., Practice and theory of electrochemical machining, New York: Wiley, 1971.

    Google Scholar 

  4. Sedykin, F.V., Razmernaya elektrokhimicheskaya obrabotka detalei mashin (Electrochemical Machining of Machine Parts), Moscow: Mashinostroenie, 1976.

    Google Scholar 

  5. Dikusar, A.I., Engel’gardt, G.R., Petrenko, V.I., and Petrov, Yu.N., Elektrodnye protsessy i protsessy perenosa pri elektrokhimicheskoi razmernoi obrabotke metallov (Electrode Processes and Transport Processes in Electrochemical Machining of Metals), Chisinau: Shtiintsa, 1983.

    Google Scholar 

  6. Rumyantsev, E. and Davydov, A.D., Electrochemical Machining of Metals, Moscow: Mir, 1989.

    Google Scholar 

  7. Shmanev, V.A., Filimoshin, V.G., Karimov, A.Kh., Petrov, B.I., and Pronichev, N.D., Tekhnologiya elektrokhimicheskoi obrabotki detalei aviadvigatelei (Technology of Electrochemical Machining of Aircraft Engine Parts), Moscow: Mashinostroenie, 1986.

    Google Scholar 

  8. Davydov, A.D. and Kozak, E., Vysokoskorostnoe elektrokhimicheskoe formoobrazovanie (High-Rate Electrochemical Shaping), Moscow: Nauka, 1990.

    Google Scholar 

  9. Dugdale, I. and Cotton, J.B., The anodic polarization of titanium in halide solutions, Corros. Sci., 1964, vol. 4, p. 397.

    Article  CAS  Google Scholar 

  10. Beck, T.R., Pitting of titanium. I. Titanium-foil experiments, J. Electrochem. Soc., 1973, vol. 120, p. 1310.

    Article  CAS  Google Scholar 

  11. Petit, J.A., Kondro, B., and Dabosi, F., Ion beam analysis investigation of pit nucleation on titanium in bromide media, Corrosion, 1980, vol. 36, p. 145.

    Article  CAS  Google Scholar 

  12. Bannard, J., On the electrochemical machining of some titanium alloys in bromide electrolytes, J. Appl. Electrochem., 1976, vol. 6, no. 6, p. 477.

    Article  CAS  Google Scholar 

  13. Abd Rabbo, M.F. and Boden, P.J., Development of electrolytes for the electrochemical machining of titanium. I. Electrochemistry in static solutions, Brit. Corros. J., 1979, vol. 14, no. 4, p. 240.

    Article  CAS  Google Scholar 

  14. Abd Rabbo, M.F. and Boden, P.J., Development of electrolytes for the electrochemical machining of titanium. II. Electrochemical studies in flowing solutions, Brit. Corros. J., 1979, vol. 14, no. 4, p. 246.

    Article  CAS  Google Scholar 

  15. Landolt, D., Chauvy, P.-F., and Zinger, O., Electrochemical micromachining, polishing and surface structuring of metals: fundamental aspects and new developments, Electrochim. Acta, 2003, vol. 48, p. 3185.

    Article  CAS  Google Scholar 

  16. Madore, C. and Landolt, D., Electrochemical micromachining of controlled topographies on titanium for bioloogical applications, J. Micromech. Microeng., 1997, vol. 7, p. 270.

    Article  CAS  Google Scholar 

  17. Davydov, A.D., Kashcheev, V.D., and Kabanov, B.N., Effect of electrolyte flow on the electrochemical machining of metals, Elektron. Obrab. Mater., 1969, no. 6, p. 13.

    Google Scholar 

  18. Rolsten, R.F., Iodide Metals and Metal Iodides, NewYork: Wiley, 1961.

    Google Scholar 

  19. Davydov, A.D., Kazarinov, V.E., Kashcheev, V.D., and Kamkin, A.N., Action of bromide ions on metals during anodic polarization, Soviet Electrochem., 1971, vol. 7, p. 431.

    Google Scholar 

  20. Casillas, N., Charlebois, S., Smyrl, W.H., and White, H.S., Pitting corrosion of titanium, J. Electrochem. Soc., 1994, vol. 141, p. 636.

    Article  CAS  Google Scholar 

  21. Garfias-Mesias, L.F., Alodan, M., James, P.I., and Smyrl, W.H., Determination of precursor sites for pitting corrosion of polycrystalline titanium by using different techniques, J. Electrochem. Soc., 1998, vol. 145, p. 2005.

    Article  CAS  Google Scholar 

  22. Huo, S. and Meng, X., The states of bromide on titanium surface prior to pit initiation, Corros. Sci., 1990, vol. 31, p. 281.

    Article  CAS  Google Scholar 

  23. Davydov, A.D., High-rate cathodic and anodic electrochemical shaping, Itogi Nauki Tekh., Ser.: Elektrokhim., Moscow: VINITI, 1989, vol. 29, p. 38.

    Google Scholar 

  24. Saushkin, B.P., Petrov, Yu.N., Nistryan, A.Z., and Maslov, A.V., Elektrokhimicheskaya obrabotka izdelii iz titanovykh splavov (Electrochemical Machining of Parts Made of Titanium Alloys), Chisinau: Shtiintsa, 1988.

    Google Scholar 

  25. Kozak, J. and Davydov, A.D., Some problems of surface roughness in electrochemical machining (ECM), Inz. Powierzchni, 2015, no. 1, p. 19.

    Google Scholar 

  26. Mirzoev, R.A. and Davydov, A.D., in Anodnye protsessy elektrokhimicheskoi i khimicheskoi obrabotki metallov (Anodic Processes in Electrochemical and Chemical Treatment of Metals), St. Petersburg: Politekhn. Univ., 2013.

    Google Scholar 

  27. Davydov, A.D., Volgin, V.M., and Lubimov, V.V. Electrochemical machining of metals: fundamentals of electrochemical shaping, Russian J. Electrochem., 2004, vol. 40, p. 1230.

    Article  CAS  Google Scholar 

  28. Davydov, A.D. and Zemskova, O.V., Anodic behavior of titanium in sodium iodide solution. Anionic anodic activation, Soviet Electrochem., 1986, vol. 22, p. 982.

    Google Scholar 

  29. Davydov, A.D. and Zemskova, O.V., Anodic behavior of titanium in sodium chloride solutions after the destruction of the oxide film, Soviet Electrochem., 1985, vol. 21, p. 463.

    Google Scholar 

  30. Davydov, A.D. and Zemskova, O.V., Causes of the anodic activation of titanium in sodium chloride solutions, Soviet Electrochem., 1984, vol. 20, p. 678.

    Google Scholar 

  31. Nishimura, R. and Kudo, K., Anodic oxidation and kinetics of titanium in 1 M chloride solution, Corros. Sci., 1982, vol. 22, p. 637.

    Article  CAS  Google Scholar 

  32. Dikusar, A.I., Davydov, A.D., Molin, A.N., and Engel’gardt, G.R., Development of thermokinetic instability during anionic anodic activation of titanium, Soviet Electrochem., 1987, vol. 23, p. 905.

    Google Scholar 

  33. Davydov, A.D., Mirzoev, R.A., and Kashcheev, V.D., Anodic activation of titanium during electrochemical machining, in Elektrofizich. i elektrokhim. metody obrabotki materialov (Electrophysical and Electrochemical methods of Machining), Moscow: MDNTP, 1972, p. 13.

    Google Scholar 

  34. Davydov, A.D., Breakdown of the passivity of rectifying metals with aggressive ions. Protection of Metals, 2001, vol. 37, p. 420.

    Article  CAS  Google Scholar 

  35. Archibald, L.C., Internal stresses formed during the anodic oxidation of titanium, Electrochim. Acta, 1977, vol. 22, p. 657.

    Article  CAS  Google Scholar 

  36. DiQuarto, F., Doblhofer, K., and Gerischer, H., Instability of anodically formed TiO2 layers, Electrochim. Acta, 1978, vol. 23, p. 195.

    Article  CAS  Google Scholar 

  37. Jouve, G., Politi, A., Lacombe, P., and Vuye, G., Etude de quelques facteurs determinant la croissance et la cristallisation des films anodiques sur le titane en milieu acide, J. Less-Common Met., 1978, vol. 50, p. 175.

    Article  Google Scholar 

  38. Faizullin, F.F. and Faizullina, R.F., On anodic oxidation of titanium in aqueous salt solutions, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1973, vol. 16, p. 1026.

    CAS  Google Scholar 

  39. Chernenko, E.K., Yanov, L.Ya., and Chernenko, V.I., Properties of oxide films formed by alternating voltage on titanium alloy VT-1, Elektrokhimiya, 1971, vol. 7, p. 1374.

    CAS  Google Scholar 

  40. Hefny, M.M., Gad, AllanA.G., Salih, S.A., and El-Basiouny, M.S., Nature of the corrosion reaction at the anodic oxide film on titanium in HCl solutions, Corrosion, 1984, vol. 40, p. 245.

    Article  CAS  Google Scholar 

  41. Chen, C.M., Beck, F.H., and Fontana, M.G., Stress corrosion cracking of Ti-8Al-lMo-lV alloy: electrochemical behavior in aqueous solutions, Corrosion, 1970, vol. 26, p. 135.

    Article  CAS  Google Scholar 

  42. El-Basiouny, M.S. and Mazhar, A.A., Electrochemical behavior of passive layers on titanium, Corrosion, 1982, vol. 38, p. 237.

    Article  CAS  Google Scholar 

  43. McAleer, J.F. and Peter, L.M., Instability of anodic oxide, J. Electrochem. Soc., 1982, vol. 129, p. 1252.

    Article  CAS  Google Scholar 

  44. Mirzoev, R.A., Davydov, A.D., and Kabanov, B.N., Electrochemical dissolution of metals in a postpassive state, Soviet Electrochem., 1983, vol. 19, p. 1269.

    Google Scholar 

  45. Sedykin, F.V., Pupkov, E.I., Kornilov, E.N., and Izotov, A.F., Study of machinability of VT14 alloy by the method of electrochemical machining, Elektrofiz. Elektrokhim. Metody Obrab., 1971, no. 1, p. 8.

    Google Scholar 

  46. Volkov, V.I., Nevskii, O.I., Rumyantsev, E.M., and Grishina, E.P., Effect of electrolyte composition on accuracy of electrochemical shaping of VT1-0 titanium, Elektron. Obrab. Mater., 1987, no. 3, p. 83.

    Google Scholar 

  47. Shmanev, V.A., Pronichev, N.D., and Senina, O.A., Issledovanie sostava prianodnogo sloya v protsesse elektrokhimicheskoi razmernoi obrabotki titanovykh splavov, in Elektrokhimicheskaya obrabotka (Electrochemical Machining), Kuibyshev: Kuib. Aviats. Inst., 1976, pp. 9–16.

    Google Scholar 

  48. Walther, B., Schilm, J., Michaelis, A., and Lohrengel, M.M., Electrochemical dissolution of hard metal alloys, Electrochim. Acta, 2007, vol. 52, p. 7732.

    Article  CAS  Google Scholar 

  49. Davydov, A.D., Kamkin, A.N. and Zemskova, O.V., Influence of an oxide film on the anodic anionic activation of metals, Soviet Electrochem. 1982, vol. 18, p. 1216.

    Google Scholar 

  50. Ohtsuka, T., Masuda, M., and Sato, N., Ellipsometric study of anodic oxide films on titanium in hydrochloric acid, sulfuric acid, and phosphate solutions, J. Electrochem. Soc., 1985, vol. 132, p. 787.

    Article  CAS  Google Scholar 

  51. Ohtsuka, T., Guo, J., and Sato, N., Raman spectra of the anodic oxide film on titanium in acidic sulfate and neutral phosphate solutions, J. Electrochem. Soc., 1986, vol. 133, p. 2473.

    Article  Google Scholar 

  52. Kashcheev, V.D., Klopova, S.V., and Davydov, A.D., Peculiarities of initial period of electrochemical machining of titanium alloys, Elektron. Obrab. Mater., 1969, no. 1, p. 12.

    Google Scholar 

  53. Armstrong, R.D. and Firman, R.E., Impedance of titanium in the active-passive transition, J. Electroanal. Chem., 1972, vol. 34, p. 391.

    Article  CAS  Google Scholar 

  54. Weinmann, M., Stolpe, M., Weber, O., Busch, R., and Natter, H., Electrochemical dissolution behaviour of Ti90Al6V4 and Ti60Al40 used for ECM applications, J. Solid State Electrochem., 2015, vol. 19, p. 485.

    Article  CAS  Google Scholar 

  55. Xu, Z., Chen, X., Zhou, Z., Qin, P., and Zhu, D., Electrochemical machining of high-temperature titanium alloy Ti60, Procedia. CIRP, 2016, vol. 42, p. 125.

    Article  CAS  Google Scholar 

  56. Baehre, D., Ernst, A., Weisshaar, K., Natter, H., Stolpe, M., and Busch, R., Electrochemical dissolution behavior of titanium and titanium-based alloys in different electrolytes, Procedia CIRP, 2016, vol. 42, p. 137.

    Article  Google Scholar 

  57. Chen, X., Qu, N., and Hou, Z., Electrochemical micromachining of micro-dimple arrays on the surface of Ti–6Al–4V with NaNO3 electrolyte, Int. J. Adv. Manuf. Technol., 2016, vol. 88, no. 1, p. 565.

    Google Scholar 

  58. Li, H., Wang, G., Qu, N., and Zhu, D., Throughmask electrochemical machining of a large-area hole array in a serpentine flow channel, Int. J. Adv. Manuf. Technol., 2017, vol. 89, no. 1, p. 933.

    Article  Google Scholar 

  59. Wang, G.Q., Li, H.S., Qu, N.S., and Zhu, D., Investigation of the hole-formation process during doublesided through-mask electrochemical machining, J. Mater. Process. Technol., 2016, vol. 234, p. 95.

    Article  CAS  Google Scholar 

  60. Davydov, A.D., Kiriyak, E.N., Kashcheev, V.D., and Kabanov, B.N., Study of anodic dissolution of titanium alloys in salt solutions. Elektron. Obrab. Mater., 1979, no. 6, p. 12.

    Google Scholar 

  61. Yu, C.Y., Yang, Y.S., and Cheng, C.K., The relation between copying accuracy and electrolytes of electrochemical machining for titanium alloys, Annals CIRP, 1981, vol. 30, p. 123.

    Article  CAS  Google Scholar 

  62. Davydov, A.D. and Kashcheev, V.D., Anodic behavior of metals in electrochemical machining, Itogi Nauki Tekhn.: Ser. Elektrokhim., Moscow: VINITI, 1974, vol. 9, p. 154.

    Google Scholar 

  63. Petrov, Yu.N., Nistryan, A.Z., and Saushkin, B.P., Study of anodic behavior of titanium alloys in ECM. I. Nitrate, chlorate, and perchlorate solutions, Elektron. Obrab. Mater., 1983, no. 1, p. 11.

    Google Scholar 

  64. Volkov, Yu.S., Monina, M.A., and Moroz, I.I., On problem of titanium machinability, Elektron. Obrab. Mater., 1972, no. 3, p. 11.

    Google Scholar 

  65. Davydov, A.D., Kashcheev, V.D., Postanogov, V.Kh., Evgen’eva, T.I., Zemskova, O.V., Zverintseva, E.O., and Girshberg, M.D., An electrolyte for electrochemical machining of titanium alloy work to size with high precision, Sov. Surf. Eng. Appl. Electrochem., 1985, no. 2, p. 103.

    Google Scholar 

  66. Froment, M., Sur l’application de la loi de faraday a l’etude de la dissolution anodiqe des metaux, Corros. Anticorros., 1959, vol. 7, p. 98.

    Google Scholar 

  67. Petrov, Yu.N., Nistryan, A.Z., and Saushkin, B.P., Study of anodic behavior of titanium alloys in ECM. II. Two-component aqueous solutions of salts, Elektron. Obrab. Mater., 1983, no. 6, p. 18.

    Google Scholar 

  68. Grishina, E.P., Nevskii, O.I., Rumyantsev, E.M., and Volkov, V.I., Study of anodic behavior of titanium and titanium alloy TS5 in mixed nitrate—chloride solutions, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1981, vol. 24, p. 1512.

    CAS  Google Scholar 

  69. Dikusar, A.I. and Senina, O.A., On reduction of nitrate ions in anodic dissolution of titanium in nitrates and nitrate-chloride solutions, Elektron. Obrab. Mater., 1981, no. 5, p. 64.

    Google Scholar 

  70. Shekun, I.F., Dikusar, A.I., Molin, A.N., and Davydov, A.D., Possible mechanism for lowering the effective valence of titanium during its anodic dissolution in chloride-nitrate solutions. Soviet Electrochem., 1990, vol. 26, p. 675.

    Google Scholar 

  71. Dikusar, A.I., Senina, O.A., Petrov, Yu.N., and Shmanev, V.A., On mechanism of hydrogen charging of titanium alloys in ECM, Elektron. Obrab. Mater., 1982, no. 6, p. 12.

    Google Scholar 

  72. Shekun, I.F., Dikusar, A.I., Molin, A.N., and Davydov, A.D., Investigation of the anodic dissolution products of titanium in chloride-nitrate solutions at high current densities. Soviet Electrochem., 1990, vol. 26, p. 85.

    Google Scholar 

  73. Rumyantsev, E.M., Nevskii, O.I., Volkov, V.I., and Grishina, E.P., Some regularities of titanium dissolution under potentiostatic conditions, Elektron. Obrab. Mater., 1984, no. 1, p. 67.

    Google Scholar 

  74. Lyubimov, V.V., Polutin, Yu.V., Borodin, V.V., Eliseev, A.A., Lutskov, Yu.I., Nikiforov, A.V., Sotov, I.N., Sundukov, V.K., Shcherbina, V.I., and Pokrovskii, Yu.Yu., Tekhnologiya i ekonomika elektrokhimicheskoi obrabotki (Technology and Economics of Electrochemical Machining), Moscow: Mashinostroenie, 1980.

    Google Scholar 

  75. Potapova, N.I., Sirazh, Yu.A., Shmanev, V.A., and Golovachev, V.A., Study of machinability of titanium alloys of VT8 types by electrochemical machining, in Trudy Kuibyshev. aviats. inst. (Proc. Kuibishev Aviation Inst.), 1968, no. 33, p. 23.

    Google Scholar 

  76. Petrov, Yu.N., Maslov, A.V., and Saushkin, B.P., Study of anodic behavior of titanium alloys in ECM. III. Non-aqueous and organo-aqueous solutions of salts, Elektron. Obrab. Mater., 1986, no. 1, p. 7.

    Google Scholar 

  77. Bannard, J.E., Treble, J.R., and Brook, P.A., The electrochemical machining of titanium in non-aqueous electrolytes, Proc. Int. Symp. Electromach., Wolfsberg, 1977, pp. 39–42.

    Google Scholar 

  78. Mathieu, J.B. and Landolt, D., Electropolishing of titanium in perchloric acid-acetic acid solution. II. Polarization behavior and stoichiometry, J. Electrochem. Soc., 1978, vol. 125, p. 1044.

    Article  CAS  Google Scholar 

  79. Rumyantsev, E.M. and Lilin, S.A., ECM in nonaqueous solutions: an effective method of machining of metals, Zh. Vses. Khim. Obshch. Im. D.I. Mendeleeva, 1984, vol. 29, p. 80.

    Google Scholar 

  80. Saushkin, B.P., Maslov, A.V., and Petrov, Yu.N., Problems of technological application of non-aqueous and organo-aqueous electrolytes. I. Productivity and power capacity, Elektron. Obrab. Mater., 1987, no. 2, p. 8.

    CAS  Google Scholar 

  81. Saushkin, B.P., Petrov, Yu.N., Maslov, A.V., and Kolpakova, N.A.,., Problems of technological application of non-aqueous and organo-aqueous electrolytes. II. Quality of surface layer, Elektron. Obrab. Mater., 1987, no. 3, p. 15.

    Google Scholar 

  82. Mansfeld, F., The effect of water on passivity and pitting of titanium in solutions of methanol and hydrogen chloride, J. Electrochem. Soc., 1971, vol. 118, p. 1412.

    Article  CAS  Google Scholar 

  83. Meshcherikova, I.D., Kashcheeva, T.P., and Rutkovskii, M.L., Behavior of titanium in ethanol—aqueous solutions of hydrogen chloride, Zashch. Met., 1970, vol. 6, p. 286.

    Google Scholar 

  84. Tsinman, A.I., Kuzub, V.S., and Katrevich, A.N., Effect of water and nature of electrolyte on andic activation of titanium in methanol solutions, Elektrokhimiya, 1966, vol. 2, p. 557.

    CAS  Google Scholar 

  85. Fushimi, K., Kondo, H., and Konno, H., Anodic dissolution of titanium in chloride-containing ethylene glycol solution, Electrochim. Acta, 2009, vol. 55, p. 258.

    Article  CAS  Google Scholar 

  86. Fushimi, K. and Habazaki, H., Anodic dissolution of titanium in NaCl-containing ethylene glycol, Electrochim. Acta, 2008, vol. 53, p. 3371.

    Article  CAS  Google Scholar 

  87. Piotrowski, O., Madore, C., and Landolt, D., The mechanism of electropolishing of titanium in methanol–sulfuric acid electrolytes, J. Electrochem. Soc., 1998, vol. 145, p. 2362.

    Article  CAS  Google Scholar 

  88. Awez Mohammad, A., Arnott, Z.L., Wang, Y., and Kruse, P., Note: Benign and reproducible preparation of titanium tips, Rev. Sci. Instrum., 2014, vol. 85, 026113 (1–3).

    Google Scholar 

  89. Sjöström, T. and Su, B., Micropatterning of titanium surfaces using electrochemical micromachining with an ethylene glycol electrolyte, Mater. Lett., 2011, vol. 65, p. 3489.

    Article  CAS  Google Scholar 

  90. Bannard, J., Effect of surface finish obtained by electrochemical machining on the fatigue life of some titanium alloys, J. Appl. Electrochem., 1974, vol. 4, p. 229.

    Article  CAS  Google Scholar 

  91. Saushkin, B.P., Nistryan, A.Z., Groza, I.A., and Burchakov, Sh.A., Electrochemical dissolution of titanium alloys in chloride electrolytes, in Sovremennye problemy elektrokhimicheskogo formoobrazovaniya (Modern Problems of Electrochemical Shaping), Chisinau: Shtiintsa, 1978, pp. 40–48.

    Google Scholar 

  92. Clifton, D., Mount, A.R., Jardine, D.J., and Roth, R., Electrochemical machining of gamma titanium aluminide intermetallics, J. Mater. Process. Tech., 2001, vol. 108, p. 338.

    Article  CAS  Google Scholar 

  93. Davydov, A.D., Klepikov, R.P., and Moroz, I.I., Electrochemical machining of titanium alloys with activating anodic pulses, Elektron. Obrab. Mater., 1980, no. 6, p. 8.

    Google Scholar 

  94. Shmanev, V.A. and Pronichev, N.D., Surface finish of titanium alloys in pulse ECM, in Elektrokhimicheskaya obrabotka (Electrochemical Machining), Kuibyshev: Trudy Kuib. Aviats. Inst., 1976, no. 63, pp. 3–9.

    Google Scholar 

  95. Wei, B., Kozak, J., and Rajurkar, K.P., Study of pulse electrochemical machining of titanium alloy, Proc. IV Conf. EM’94, Electromachining. Bydgoszcz, 1994, II-T, p. 123.

    Google Scholar 

  96. Lee, E.-S., Shin, T.-H., Kim, B.-K., and Baek, S.Y., Investigation of short pulse electrochemical machining for groove process on Ni-Ti shape memory alloy, Int. J. Precision Eng. Manufact., 2010, vol. 11, p. 113.

    Article  CAS  Google Scholar 

  97. Schuster, R., Kirchner, V., Allongue, P., and Ertl, G., Electrochemical micromachining, Science, 2000, vol. 289, p. 98.

    Article  CAS  Google Scholar 

  98. Schuster, R., Electrochemical microstructuring with short voltage pulses, ChemPhysChem., 2007, vol. 8, p. 34.

    Article  CAS  Google Scholar 

  99. Kock, M., Kirchner, V., and Schuster, R., Electrochemical micromachining with ultrashort voltage pulses—a versatile method with lithographical precision, Electrochim. Acta, 2003, vol. 48, p. 3213.

    Article  CAS  Google Scholar 

  100. Speidel, A., Mitchell-Smith, J., Walsh, D.A., Hirsch, M., and Clare, A., Electrolyte jet machining of titanium alloys using novel electrolyte solutions, Procedia CIRP, 2016, vol. 42, p. 367.

    Article  Google Scholar 

  101. Mitchell-Smith, J. and Clare, A.T., Electrochemical jet machining of titanium: overcoming passivation layers with ultrasonic assistance, Procedia CIRP, 2016, vol. 42, p. 379.

    Article  Google Scholar 

  102. Pajak, P.T., Desilva, A.K.M., Harrison, D.K., and Mcgeough, J.A., Precision and efficiency of laser assisted jet electrochemical machining, Precis. Eng., 2006, vol. 30, p. 288.

    Article  Google Scholar 

  103. Lu, X. and Leng, Y., Electrochemical micromachining of titanium surfaces for biomedical applications, J. Mater. Proc. Technol., 2005, vol. 169, p. 173.

    Article  CAS  Google Scholar 

  104. Qu, N., Fang, X., Li, W., Zeng, Y., and Zhu, D., Wire electrochemical machining with axial electrolyte flushing for titanium alloy, Chin. J. Aeronaut., 2013, vol. 26, p. 224.

    Article  CAS  Google Scholar 

  105. Qu, N.S., Fang, X.L., Zhang, Y.D., and Zhu, D., Enhancement of surface roughness in electrochemical machining of Ti6Al4V by pulsating electrolyte, Int. J. Adv. Manuf. Technol., 2013, vol. 69, p. 2703.

    Article  Google Scholar 

  106. Dhobe, S.D., Doloi, B., and Bhattacharyya, B., Surface characteristics of ECMed titanium work samples for biomedical applications, Int. J. Adv. Manuf. Technol., 2011, vol. 55, p. 177.

    Article  Google Scholar 

  107. Buhlert, M., Electropolishing and electrochemical structuring of titanium, Proc. Int. Symp. on Electrochemical Machining Technology INSECT, Fraunhofer, 2009, p. 65.

    Google Scholar 

  108. Madore, C., Piotrowski, O., and Landolt, D., Through-mask electrochemical micromachining of titanium, J. Electrochem. Soc., 1999, vol. 146, p. 2526.

    Article  CAS  Google Scholar 

  109. Chauvy, P.-F., Hoffmann, P., and Landolt, D., Applications of laser lithography on oxide film to titanium micromachining, Appl. Surf. Sci., 2003, vols. 208–209, p. 165.

    Article  CAS  Google Scholar 

  110. Kern, P., Veh, J., and Michleh, J., New developments in through-mask electrochemical micromachining of titanium, J. Micromech. Microeng., 2007, vol. 17, p. 1168.

    Article  CAS  Google Scholar 

  111. Ferri, Y., Piotrowski, O., Chauvy, P.-F., Madore, C., and Landolt, D., Two-level electrochemical micromachining of titanium for device fabrication, J. Micromech. Microeng., 2001, vol. 11, p. 522.

    Article  CAS  Google Scholar 

  112. Klocke, F., Zeis, M., and Klink, A., Technological and economical capabilities of manufacturing titanium- and nickel-based alloys via electrochemical machining (ECM), Key Eng. Mater., 2012, vols. 504–506, p. 1237.

    Article  CAS  Google Scholar 

  113. Bellows, G. and Kohls, J.B., Drilling without drills, American Machinist. Special Report 743, 1982, vol. 126, p. 173.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Davydov.

Additional information

This paper is the authors’ contribution to the special issue of Russian Journal of Electrochemistry dedicated to the 100th anniversary of the birth of the outstanding Soviet electrochemist Veniamin G. Levich.

Original Russian Text © A.D. Davydov, T.B. Kabanova, V.M. Volgin, 2017, published in Elektrokhimiya, 2017, Vol. 53, No. 9, pp. 1056–1072.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydov, A.D., Kabanova, T.B. & Volgin, V.M. Electrochemical machining of titanium. Review. Russ J Electrochem 53, 941–965 (2017). https://doi.org/10.1134/S102319351709004X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319351709004X

Keywords

Navigation