Skip to main content
Log in

Lithium-ion conductivity of the Nafion membrane swollen in organic solvents

  • Short Communications
  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The lithium-ion conductivity of the lithium form of the commercial perfluorinated membrane Nafion-115 was studied in a series of aprotic solvents in a wide temperature range. The highest ion conductivity was obtained for the sample kept in N,N-dimethyl formamide (DMF); its use in lithium-ion batteries, however, is restricted by its low electrochemical stability. Mixed solvents based on dimethyl sulfoxide (DMSO) with propylene carbonate (PC) and 1,2-dimethoxyethane (DME) additions were optimum solvents for ion transport. The Nafion membrane in the lithium form kept in a mixed solvent DMSO: PC: DME = 1: 1: 2 was characterized by high ion conductivity at room temperature (2.0 mS/cm) and the absence of phase transitions in the temperature range from–40 to +60°C. The activation energy of conductivity of the samples kept in DMF, DMSO, and mixed solvents based on DMSO above the transition temperature was 15–20 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Skundin, A.M., Efimov, O.N., Yarmolenko, O.V., Russ. Chem. Rev., 2002, vol. 71, p. 329.

    Article  CAS  Google Scholar 

  2. Etacheri, V., Marom, R., Elazari, R., Salitra, G., and Aurbach, D., Energy Environ. Sci., 2011, vol. 4, p. 3243.

    Article  CAS  Google Scholar 

  3. Xu, K., Chem. Rev., 2004, vol. 104, p. 4303.

    Article  CAS  Google Scholar 

  4. Baskakova, Yu.V., Yarmolenko, O.V., and Efimov, O.N., Russ. Chem. Rev., 2012, vol. 81, p. 367.

    Article  CAS  Google Scholar 

  5. Quartarone, E. and Mustarelli, P., Chem. Soc. Rev., 2011, vol. 40, p. 2525.

    Article  CAS  Google Scholar 

  6. Wright, P.V., MRS Bull., 2002, vol. 27, p. 597.

    Article  CAS  Google Scholar 

  7. Chauvin, C., Alloin, F., Iojoiu, C., and Sanchez, J.-Y., Electrochim. Acta, 2006, vol. 51, p. 5954.

    Article  CAS  Google Scholar 

  8. Dou, Sh., Zhang, Sh., Klein, R.J., Runt, J., and Colby, R.H., Chem. Mater., 2006, vol. 18, p. 4288.

    Article  CAS  Google Scholar 

  9. Ito, K., Nishina, N., and Ohno, H., J. Mater. Chem., 1997, vol. 7, p. 1357.

    Article  CAS  Google Scholar 

  10. Kalapala, S. and Easteal, A.J., J. Power Sources, 2005, vol. 147, p. 256.

    Article  CAS  Google Scholar 

  11. Ryu, S.-W. and Mayes, A.M., Polymer, 2008, vol. 49, p. 2268.

    Article  CAS  Google Scholar 

  12. Choi, N.-S., Lee, Y.M., Lee, B.H., Lee, J.A., and Park, J.-K., Solid State Ionics, 2004, vol. 167, p. 293.

    Article  CAS  Google Scholar 

  13. Sun, J., Bayley, P., MacFarlane, D.R., and Forsyth, M., Electrochim. Acta, 2007, vol. 52, p. 7083.

    Article  CAS  Google Scholar 

  14. Kreuer, K.-D., Wohlfarth, A., Araujo, C.C., Fuchs, A., and Maier, J., Chem. Phys. Chem., 2011, vol. 12, p. 2558.

    CAS  Google Scholar 

  15. Guhathakurta, S. and Min, K., Polymer, 2010, vol. 51, p. 211.

    Article  CAS  Google Scholar 

  16. Park, Ch.H., Sun, Y.-K., and Kim, D.-W., Electrochim. Acta, 2004, vol. 50, p. 375.

    Article  CAS  Google Scholar 

  17. Aldebert, P., Guglielmi, M., and Pineri, M., Polym. J., 1991, vol. 23, p. 399.

    Article  CAS  Google Scholar 

  18. Doyle, M., Lewittes, M.E., Roelofs, M.G., Perusich, S.A., and Lowrey, R.E., J. Membr. Sci., 2001, vol. 184, p. 257.

    Article  CAS  Google Scholar 

  19. Sachan, S., Ray, C.A., and Perusich, S.A., Polym. Eng. Sci., 2002, vol. 42, p. 1469.

    Article  CAS  Google Scholar 

  20. Navarrini, W., Scrosati, B., Panero, S., Ghielmi, A., Sanguineti, A., and Geniram, G., J. Power Sources, 2008, vol. 178, p. 783.

    Article  CAS  Google Scholar 

  21. Liu, Y., Cai, Zh., Tan, L., and Li, L., Energy Environ. Sci., 2012, vol. 5, p. 9007.

    Article  CAS  Google Scholar 

  22. Cai, Zh., Liu, Y., Liu, S., Li, L., and Zhang, Y., Energy Environ. Sci., 2012, vol. 5, p. 5690.

    Article  CAS  Google Scholar 

  23. Matsuda, Y., Morita, M., and Kosaka, K., J. Electrochem. Soc., 1983, vol. 130, p. 101.

    Article  CAS  Google Scholar 

  24. Kurmaz, V.A., Kotkin, A.S., and Simbirtseva, G.V., J. Solid State Electrochem., 2011, vol. 15, p. 2119.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Sanginov.

Additional information

Original Russian Text © E.A. Sanginov, E.Yu. Evshchik, R.R. Kayumov, Yu.A. Dobrovol’skii, 2015, published in Elektrokhimiya, 2015, Vol. 51, No. 10, pp. 1115–1120.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanginov, E.A., Evshchik, E.Y., Kayumov, R.R. et al. Lithium-ion conductivity of the Nafion membrane swollen in organic solvents. Russ J Electrochem 51, 986–990 (2015). https://doi.org/10.1134/S1023193515100122

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193515100122

Keywords

Navigation