Skip to main content
Log in

A sensor based on incorporating Ni2+ into ZnO nanoparticles-multi wall carbon nanotubes-poly methyl metacrylat nanocomposite film modified carbon paste electrode for determination of carbohydrates

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The ZnO nanoparticles (ZnONPs) were synthesized with gelatin as stabilizer via the sol-gel method and were characterized by transmission electron microscope (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). An electrochemical sensor based on ZnO nanoparticles-multi wall carbon nanotubes-poly methyl metacrylat (ZnONPs-MWCNT-PMMA) composite film was developed by incorporating Ni2+ into the ZnONPs-MWCNT-PMMA film modified carbon paste electrode (Ni2+/ZnONPs-MWCNT-PMMA/CPE). The electrochemical activity of Ni2+/ZnONPs-MWCNT-PMMA/CPE was illustrated in 0.10 M NaOH using cyclic voltammetry. The Ni2+/ZnONPs-MWCNT-PMMA/CPE exhibits the characteristic of improved reversibility and enhanced current responses of the Ni(III)/Ni(II) couple. Ni2+/ZnONPs-MWCNT-PMMA/CPE also show good electrocatalytic activity toward the oxidation of carbohydrates (glucose, fructose and sorbitol). The Ni2+/ZnONPs-MWCNT-PMMA/CPE gives a good linear range with a detection limit of 8, 6, and 9 μM towards the determination of glucose, fructose and sorbitol, respectively by amperometry. Furthermore, the modified sensor was successfully applied to the sensitive determination of carbohydrates in real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zheng, H., Xue, H.G., Zhang, Y.F. and Shen, Z.Q., Biosens. Bioelectron., 2002, vol. 17, p. 541.

    Article  CAS  Google Scholar 

  2. Nau, V. and Nieman, T.A., Anal. Chem., 1979, vol. 51, p. 424.

    Article  CAS  Google Scholar 

  3. Reddy, S.M. and Vadgama, P.M., Anal. Chim. Acta, 1997, vol. 350, p. 77.

    Article  CAS  Google Scholar 

  4. Rubtsova, M.Y., Kovba, G.V., and Egorov, A.M., Biosens. Bioelectron., 1998, vol. 13, p. 75.

    Article  CAS  Google Scholar 

  5. Ying, L., Kang, E.T., and Neoh, K.G., J. Membr. Sci., 2002, vol. 208, p. 361.

    Article  CAS  Google Scholar 

  6. Wang, Z.L., J. Phys.: Condens. Matter., 2004, vol. 16, p. 829.

    CAS  Google Scholar 

  7. Fan, Z. and Lu, J.G., J. Nanosci. Nanotechnol., 2005, vol. 5, p. 1561.

    Article  CAS  Google Scholar 

  8. Deng, C., Hu, H., Shao, G., and Han, C., Mater. Lett., 2010, vol. 64, p. 852.

    Article  CAS  Google Scholar 

  9. Wang, Z.H., Geng, D.Y., Han, Z., and Zhang, Z.D., Mater. Lett., 2009, vol. 63, p. 2533.

    Article  CAS  Google Scholar 

  10. Bigdeli, F. and Morsali, A., Mater. Lett., 2010, vol. 64, p. 4.

    Article  CAS  Google Scholar 

  11. Jajarmi, P., Mater. Lett., 2009, vol. 63, p. 2646.

    Article  CAS  Google Scholar 

  12. Song, R., Liu, Y., and He, L., Solid State Sci., 2008, vol. 10, p. 1563.

    Article  CAS  Google Scholar 

  13. Kuo, C.L., Wang, C.L., Ko, H.H., Hwang, W.S., Chang, K.M., Li, W.L., et al., Ceram. Inter., 2010, vol. 36, p. 693.

    Article  CAS  Google Scholar 

  14. Li, Q., Kang, Z., Mao, B., Wang, E., Wang, C., Tian, C., et al., Mater. Lett., 2008, vol. 62, p. 2531.

    Article  CAS  Google Scholar 

  15. Xu, H.Y., Wang, H., Zhang, Y.C., Zhu, W.L., Wang, B., and Yan, H., Ceram. Inter., 2004, vol. 30, p. 93.

    Article  CAS  Google Scholar 

  16. Luo, J., Liang, J.K., Liu, Q.L., Liu, F.S., Zhang, Y., Sun, B.J., et al., J. Appl. Phys., 2005, vol. 97, p. 086106.

    Article  CAS  Google Scholar 

  17. Cheng, B. and Samulski, E.T., Chem. Commun., 2004, vol. 8, p. 986.

    Article  CAS  Google Scholar 

  18. Zhai, H.J., Wu, W.H., Lu, F., Wang, H.S., and Wang, C., Mater. Chem. Phys., 2008, vol. 112, p. 1024.

    Article  CAS  Google Scholar 

  19. Xiang, Q., Meng, G., Zhang, Y., Xu, J., Xu, P., Pan, Q., et al., Sens. Actuators B, 2010, vol. 143, p. 635.

    Article  CAS  Google Scholar 

  20. Wang, J., Shi, N., Qi, Y., and Liu, M., J. Sol-Gel Sci. Technol., 2010, vol. 53, p. 101.

    Article  CAS  Google Scholar 

  21. Wael, K.D., Belder, S.D., Vlierberghe, S.V., Steenberge, G.V., Dubruel, P., and Adriaens, A., Talanta, 2010, vol. 82, p. 1980.

    Article  CAS  Google Scholar 

  22. Shoji, E. and Freund, M.S., J. Am. Chem. Soc., 2001, vol. 123, p. 3383.

    Article  CAS  Google Scholar 

  23. You, T., Niwa, O., Chen, Z., Hayashi, K., Tomita, M., and Hirono, S., Anal. Chem., 2003, vol. 75, p. 5191.

    Article  CAS  Google Scholar 

  24. Wu, L., Zhang, X., and Ju, H., Biosens. Bioelectron., 2007, vol. 19, p. 141.

    Google Scholar 

  25. Meng, L., Jin, J., Yang, G., Lu, T., Zhang, H., and Cai, C., Anal. Chem., 2009, vol. 81, p. 7271.

    Article  CAS  Google Scholar 

  26. Newman, J.D. and Turner, A.P.F., Biosens. Bioelectron., 2005, vol. 20, p. 2435.

    Article  CAS  Google Scholar 

  27. Wu, B., Zhang, G., Shuang, S., and Choi, M., Talanta, 2004, vol. 8, p. 546.

    Article  CAS  Google Scholar 

  28. Shamsipur, M., Najafi, M., and Milani Hosseini, M.R., Bioelectrochemistry, 2010, vol. 77, p. 120.

    Article  CAS  Google Scholar 

  29. Sattarahmady, N., Heli, H., and Faramarzi, F., Talanta, 2010, vol. 82, p. 1126.

    Article  CAS  Google Scholar 

  30. Wang, J. and Taha, Z., Anal. Chem., 1990, vol. 62, p. 1413.

    Article  CAS  Google Scholar 

  31. Chen, Q., Wang, J., Rayson, G., Tian, B., and Lin, Y., Anal. Chem., 1993, vol. 65, p. 251.

    Article  CAS  Google Scholar 

  32. Zadeii, J.M., Marioli, J., and Kuwana, T., Anal. Chem., 1991, vol. 63, p. 649.

    Article  CAS  Google Scholar 

  33. Kauo, K., Torimura, M., Esaka, Y., and Goto, M., J. Electroanal. Chem., 1994, vol. 372, p. 137.

    Article  Google Scholar 

  34. Barrera, C., Zhukov, I., Villagra, E., Bedioui, F., Paez, M.A., Costamagna, J., and Zagal, J.H., J. Electroanal. Chem., 2006, vol. 589, p. 212.

    Article  CAS  Google Scholar 

  35. Chekin, F., Bagheri, S., and Abd Hamid, S.B., Anal. Methods, 2012, vol. 4, p. 2423.

    Article  CAS  Google Scholar 

  36. Raoof, J.B., Ojani, R., Amiri-Aref, M., and Chekin, F., Russ. J. Electrochem., 2012, vol. 48, p. 450.

    Article  CAS  Google Scholar 

  37. Hutton, L.A., Vidotti, M., Patel, A.N., Newton, M.E., Unwin, R.P., and Macpherson, J.V., J. Phys. Chem. C, 2011, vol. 115, p. 1649.

    Article  CAS  Google Scholar 

  38. Danaee, I., Jafarian, M., Forouzandeh, F., Gobal, F., and Mahjani, M.G., Int. J. Hydrogen Energy, 2008, vol. 33, p. 4367.

    Article  CAS  Google Scholar 

  39. Sanghavi, B.J., Mobin, S.M., Mathur, P., Lahiri, G.K., and Srivastava, A.K., Biosens. Bioelectron., 2013, vol. 39, p. 124.

    Article  CAS  Google Scholar 

  40. Sanghavi, B.J. and Srivastava, A.K., Electrochim. Acta, 2010, vol. 55, p. 8638.

    Article  CAS  Google Scholar 

  41. Sanghavi, B.J. and Srivastava, A.K., Electrochim. Acta, 2011, vol. 56, p. 4188.

    Article  CAS  Google Scholar 

  42. Sanghavi, B.J. and Srivastava, Anal. Chim. Acta, 2011, vol. 706, p. 246.

    Article  CAS  Google Scholar 

  43. Zhao, C., Shao, C., Li, M., and Jiao, K., Talanta, 2007, vol. 71, p. 1769.

    Article  CAS  Google Scholar 

  44. Tominaga, M., Shimazoe, T., Nagashima, M., and Taniguchi, I., Electrochem. Commun., 2005, vol. 7, p. 189.

    Article  CAS  Google Scholar 

  45. Mho, S. and Johnson, D.C., J. Electroanal. Chem., 2001, vol. 500, p. 524.

    Article  CAS  Google Scholar 

  46. Proenca, L., Lopes, M.I.S., Fonseca, I., Kokoh, K.B., Leger, J.M., and Lamy, C., J. Electroanal. Chem., 1997, vol. 432, p. 237.

    Article  CAS  Google Scholar 

  47. Bai, Y., Sun, Y., and Sun, C., Biosens. Bioelectron., 2008, vol. 24, p. 579.

    Article  CAS  Google Scholar 

  48. Arvinte, A., Sesay, A.M., and Virtanen, V., Talanta, 2011, vol. 84, p. 180.

    Article  CAS  Google Scholar 

  49. Saidman, S.B., Lobo-Castanon, M.J., Miranda-Ordieres, A.J., and Tunon-Blanc, P., Anal. Chim. Acta, 2000, vol. 424, p. 45.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fereshteh Chekin.

Additional information

Published in Russian in Elektrokhimiya, 2014, Vol. 50, No. 10, pp. 1075–1083.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chekin, F., Yazdaninia, M. A sensor based on incorporating Ni2+ into ZnO nanoparticles-multi wall carbon nanotubes-poly methyl metacrylat nanocomposite film modified carbon paste electrode for determination of carbohydrates. Russ J Electrochem 50, 967–973 (2014). https://doi.org/10.1134/S1023193514040041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193514040041

Keywords

Navigation