Skip to main content
Log in

Simulation of detoxication processes on ideally polarizable porous carbon materials

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The hemosorbents made of carbon materials, which are used for hemosorption detoxication, should be indifferent toward blood. Therefore, in the course of hemosorption, it is important to avoid the Faradaic processes, which can change the blood composition. The probability of Faradaic processes depends on the open-circuit potential of activated carbon. This dependence is studied by simulating the detoxication processes. In order to obtain various open-circuit potentials, which are reached after switching-off polarization, the adsorption of cupric ions and t-butanol on the preliminarily polarized hemosorbent (AG-3 activated carbon) is studied. The effective number of electrons, which are transferred in an elementary adsorption act, is determined. The conditions, under which the Faradaic process does or does not proceed, are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Tarasevich, M.R., Elektrokhimiya uglerodnykh materialov (Electrochemistry of Carbon Materials), Moscow: Nauka, 1984.

    Google Scholar 

  2. Lopukhin, Yu.M. and Molodenkov, M.N., Gemosorbtsiya (Hemosorption), Moscow: Meditsina, 1985.

    Google Scholar 

  3. Goldin, M.M., Volkov, A.G., Goldfarb, Yu.S., and Goldin, Mikh.M., J. Electrochem. Soc., 2006, vol. 153, p. J91.

    Article  CAS  Google Scholar 

  4. Bansal, R.C. and Goyal, M., Activated carbon adsorption, Roca Raton FL: CRC Press Taylor & Frensis group, 2005.

    Book  Google Scholar 

  5. Chemistry and Physics of Carbon, Radovich, L.R., Ed., New York: Marcel Dekker, 2001, vol. 27.

    Google Scholar 

  6. Marsh, H. and Rodrigues-Reinoso, F., Activated, Carbon., Oxford, UK: Elsevier, 2006.

    Google Scholar 

  7. Tarkovskaya, I.A., Okislennyi ugol’ (Oxidized Carbon), Kiev: Nauk. Dumka, 1981.

    Google Scholar 

  8. Frumkin, A.N., Potentsialy nulevogo zaryada (Zero-Charge Potentials), Moscow: Nauka, 1982.

    Google Scholar 

  9. Bulgakova, N.S., Chaika, M.Yu., Kravchenko, T.A., Polyanskii, L.N., and Krysanov, V.A., Sorbtsionnye i khromatograficheskie protsessy, (Sorption and Chromatographic Processes), 2008, vol. 8, p. 53.

    Google Scholar 

  10. Strelko, V.V., Ukr. Khim. Zh., 1991, vol. 57, p. 1065.

    CAS  Google Scholar 

  11. Tarasenko, Yu.A., Reznik, G.V., and Bagreev, A.A., Ukr. Khim. Zh., 1989, vol. 55, p. 249.

    CAS  Google Scholar 

  12. Tarasenko, Yu.A., Reznik, G.V., Bagreev, A.A., and Lysenko, A.A., Zh. Fiz. Khim., 1993, vol. 63, p. 2333.

    Google Scholar 

  13. Goldin, M.M., Volkov, A.G., and Namychkin, D.N., J. Electrochem. Soc., 2005, vol. 152, p. E167.

    Article  CAS  Google Scholar 

  14. Goldin, M., Volkov, A.G., and Namychkin, D.N., J. Electrochem. Soc., 2005, vol. 152, p. E172.

    Article  CAS  Google Scholar 

  15. Dougall, G.J., Hancock, R.D., and Nicolet, M.J., J. S. Afr. Inst. Mining and Met., 1980, no. 9, p. 344.

  16. Yunusov, M.P., Perezdrienko, I.V., Namazbaev, Sh.N., and Molodozhenyuk, T.B., Khim. Prom., 2003, no. 8, p. 382.

  17. Kienle, H. and Bader, E., Aktivkohle und Ihre Industrielle Anwendung, Stuttgart: Ferdinand Enke, 1980.

    Google Scholar 

  18. Strelko, V.V., Dudarenko, V.V., Tarasenko, Yu.A., Senkevich, A.I., and Nemoshkalenko, A.I., Ukr. Khim. Zh., 1986, vol. 52, p. 1157.

    CAS  Google Scholar 

  19. Vasil’ev, Yu.B., Grinberg, V.A., Sergienko, V.I., Martynov, A.K., and Bulygina, T.N., Elektrokhimiya, 1988, vol. 24, p. 295.

    Google Scholar 

  20. Frumkin, A., Z. Phys., 1926, vol. 35, p. 792.

    Article  CAS  Google Scholar 

  21. Frumkin, A.N. and Melik-Gaikazyan, V.I., Dokl. Akad. Nauk SSSR, 1951, vol. 77, p. 855.

    CAS  Google Scholar 

  22. Grafov, B.M. and Ukshe, E.A., Elektrokhimicheskie tsepi peremennogo toka (AC Electrochemical Circuits), Moscow: Nauka, 1973.

    Google Scholar 

  23. Rychagov, A.Yu., Urisson, N.A., and Volfkovich, Yu.M., Russ. J. Electrochem, 2001, vol. 37, p. 1172.

    Article  CAS  Google Scholar 

  24. Idrisova, S.F. and Grinevich, V.I., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2009, vol. 52, p. 41.

    CAS  Google Scholar 

  25. Dyatkina, S.L. and Damaskin, B.B., Elektrokhimiya, 1978, vol. 14, p. 461.

    CAS  Google Scholar 

  26. Lopatkin, A.A., Teoreticheskie osnovy fizicheskoi adsorbtsii (Theoretical Basis of Physical Adsorption), Moscow: Mosk. Gos. Univ., 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikh. M. Goldin.

Additional information

Original Russian Text © Mikh.M. Goldin, B.M. Grafov, G.R. Garaeva, A.D. Davydov, M.M. Goldin, V.A. Kolesnikov, 2013, published in Elektrokhimiya, 2013, Vol. 49, No. 2, pp. 121–128.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldin, M.M., Grafov, B.M., Garaeva, G.R. et al. Simulation of detoxication processes on ideally polarizable porous carbon materials. Russ J Electrochem 49, 107–114 (2013). https://doi.org/10.1134/S1023193513020079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193513020079

Keywords

Navigation