Skip to main content
Log in

Features of Diversity of Polyketide Synthase Genes in the Community of Freshwater Sponge Baikalospongia fungiformis

  • ANIMAL GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

In the present study, we analyze the sequences of gene fragments of polyketide synthases (PKS) of microorganisms associated with the endemic Baikal sponge Baikalospongia fungiformis. PKSs are multienzyme complexes responsible for the synthesis of low molecular weight biologically active substances (BAS). Cloning and sequencing of the amplification products of the ketosynthase (KS) domain of PKS in the B. fungiformis microbiome reveal 18 unique sequences, most of which were highly identical (97–99%) to the genes of PKS of microorganisms from communities of other species of Baikal sponges. On phylogenetic trees, these groups of sequences form characteristic “Baikal clades.” Apparently, the basic sponge community that formed during the coevolution contains common groups of microorganisms that are potential producers of biologically active substances. BlastX analysis showed that the obtained fragments belong to bacterial polyketide synthases (phyla Cyanobacteria, Proteobacteria, Planctomycetes, Latescibacteria, and Gemmatimonadates), as well as eukaryotic algae (divisions Haptophyta and Ochrophyta). This work indicates a significant biotechnological potential of freshwater sponge communities and the prospects for research in the direction of searching for new natural metabolites in complex freshwater microbiomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Webster, N.S. and Taylor, M.W., Marine sponges and their microbial symbionts: love and other relationships, Environ. Microbiol., 2012, vol. 14, no. 2, pp. 335—346. https://doi.org/10.1111/j.1462-2920.2011.02460.x

    Article  CAS  PubMed  Google Scholar 

  2. Thomas, T.R., Kavlekar, D.P., and LokaBharathi, P.A., Marine drugs from sponge microbe association—a review, Mar. Drugs, 2010, vol. 8, pp. 1417—1468. https://doi.org/10.3390/md8041417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Khalifa, S.A.M., Elias, N., Farag, M.A., et al., Marine natural products: a source of novel anticancer drugs, Mar. Drugs, 2019, vol. 17, no. 9. https://doi.org/10.3390/md17090491

  4. Ehrenreich, I., Waterbury, J., and Webb, E., Distribution and diversity of natural product genes in marine and freshwater cyanobacterial cultures and genomes, Appl. Environ. Microb., 2005, vol. 71, pp. 7401—7413. https://doi.org/10.1128/AEM.71.11.7401-7413.2005

    Article  CAS  Google Scholar 

  5. Weissman, K.J., Introduction to polyketide biosynthesis, Methods Enzymol., 2009, vol. 459, pp. 3—16. https://doi.org/10.1016/S0076-6879(09)04601-1

    Article  CAS  PubMed  Google Scholar 

  6. Yu, D., Xu, F., Zeng, J., et al., Type III polyketide synthases in natural product biosynthesis, IUBMB Life, 2012, vol. 64, pp. 285—295. https://doi.org/10.1002/iub.1005

    Article  CAS  PubMed  Google Scholar 

  7. Mullis, M.M., Rambo, I.M., Baker, B.J., et al., Diversity, ecology, and prevalence of antimicrobials in nature, Front. Microbiol., 2019, vol. 10. https://doi.org/10.3389/fmicb.2019.02518

  8. Wang, B., Guo, F., Huang, C., et al., Unraveling the iterative type I polyketide synthases hidden in Streptomyces, Proc. Natl. Acad. Sci. U.S.A., 2020, vol. 117, no. 15, pp. 8449—8454. https://doi.org/10.1073/pnas.1917664117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kurnia, N.M., Uria, A.R., Yudi Kusnadi, Y., et al., Metagenomic survey of potential symbiotic bacteria and polyketide synthase genes in an Indonesian marine sponge, HAYATI J. Biosci., 2017, vol. 24, no. 1, pp. 6—15. https://doi.org/10.1016/j.hjb.2017.04.004

    Article  Google Scholar 

  10. Hertweck, C., The biosynthetic logic of polyketide diversity, Angew. Chem. Int. Ed. Engl., 2009, vol. 48, no. 26, pp. 4688—4716. https://doi.org/10.1002/anie.200806121

    Article  CAS  PubMed  Google Scholar 

  11. Ansari, M.Z., Yadav, G., Gokhale, R.S., et al., NRPS-PKS: a knowledge-based resource for analysis of NRPS/PKS megasynthases, Nucleic Acids Res., 2004, vol. 32, pp. 405—413. https://doi.org/10.1093/nar/gkh359

    Article  CAS  Google Scholar 

  12. Moffitt, M.C. and Neilan, B.A., Evolutionary affiliations within the superfamily of ketosynthases reflect complex pathway associations, J. Mol. Evol., 2003, vol. 56, pp. 446—457. https://doi.org/10.1007/s00239-002-2415-0

    Article  CAS  PubMed  Google Scholar 

  13. Kennedy, J., Codling, C.E., Jones, B.V., et al., Diversity of microbes associated with the marine sponge, Haliclona simulans, isolated from Irish waters and identification of polyketide synthase genes from the sponge metagenome, Environ. Microbiol., 2008, vol. 10, pp. 1888—1902. https://doi.org/10.1111/j.1462-2920.2008.01614.x

    Article  CAS  PubMed  Google Scholar 

  14. Hochmuth,T. and Piel, J., Polyketide synthases of bacterial symbionts in sponges-evolution-based applications in natural products research, Phytochemistry, 2009, vol. 70, nos. 15—16, pp. 1841—1849. https://doi.org/10.1016/j.phytochem.2009.04.010

    Article  CAS  PubMed  Google Scholar 

  15. Newman, D.J. and Cragg, G.M., Natural products as sources of new drugs over the 30 years from 1981 to 2010, J. Nat. Prod., 2012, vol. 75, pp. 311—335. https://doi.org/10.1021/np200906s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jenke-Kodama, H. and Dittmann, E., Evolution of metabolic diversity: insights from microbial polyketidesynthases, Phytochemistry, 2009, vol. 70, pp. 1858—1866. https://doi.org/10.1016/j.phytochem.2009.05.021

    Article  CAS  PubMed  Google Scholar 

  17. Esteves, A.I., Hardoim, C.C., Xavier, J.R., et al., Molecular richness and biotechnological potential of bacteria cultured from Irciniidae sponges in the north-east Atlantic, FEMS Microbiol. Ecol., 2013, vol. 85, no. 3, pp. 519—536. https://doi.org/10.1111/1574-6941.12140

    Article  CAS  PubMed  Google Scholar 

  18. Della Sala, G., Hochmuth, T., Teta, R., et al., Polyketide synthases in the microbiome of the marine sponge Plakortis halichondrioides: a metagenomic update, Mar. Drugs, 2014, vol. 12, pp. 5425—5440. https://doi.org/10.3390/md12115425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Trindade-Silva, A.E., Rua, C.P.J., Andrade, B.G.N., et al., Polyketide synthase gene diversity within the microbiome of the sponge Arenosclera brasiliensis, endemic to the Southern Atlantic Ocean, Appl. Environ. Microbiol., 2013, vol. 79, no. 5, pp. 1598—1605. https://doi.org/10.1128/AEM.03354-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Woodhouse, J.N., Fan, L., Brown, M.V., et al., Deep sequencing of non-ribosomal peptide synthases and polyketide synthases from the microbiomes of Australian marine sponges, ISME J., 2013, vol. 7, no. 9, pp. 1842—1851. https://doi.org/10.1038/ismej.2013.65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Santos, O.C., Soares, A.R., Machado, F.L., et al., Investigation of biotechnological potential of sponge-associated bacteria collected in Brazilian coast, Lett. Appl. Microbiol., 2015, vol. 60, no. 2, pp. 140—147. https://doi.org/10.1111/lam.12347

    Article  CAS  PubMed  Google Scholar 

  22. Borchert, E., Jackson, S.A., O’Gara, F., et al., Diversity of natural product biosynthetic genes in the microbiome of the deep sea sponges Inflatella pellicula, Poecillastra compressa, and Stelletta normani, Front. Microbiol., 2016, vol. 7. https://doi.org/10.3389/fmicb.2016.01027

  23. Talevska, A., Pejin, B., Beric, T., et al., Further insight into the bioactivity of the freshwater sponge Ochridaspongia rotunda, Pharm. Biol., 2017, vol. 55, no. 1, pp. 1313—1316. https://doi.org/10.1080/13880209.2017.1297468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Talevska, A., Pejin, B., Kojic, V., et al., A contribution to pharmaceutical biology of freshwater sponges, Nat. Prod. Res., 2018, vol. 32, no. 5, pp. 568—571. https://doi.org/10.1080/14786419.2017.1315719

    Article  CAS  PubMed  Google Scholar 

  25. Keller-Costa, T., Jousset, A., van Overbeek, L., et al., The freshwater sponge Ephydatia fluviatilis harbours diverse Pseudomonas species (Gammaproteobacteria, Pseudomonadales) with broad-spectrum antimicrobial activity, PLoS One, 2014, vol. 9, no. 2. https://doi.org/10.1371/journal.pone.0088429

  26. Laport, M.S., Pinheiro, U., and Rachid, C.T.C.D.C., Freshwater sponge Tubella variabilis presents richer microbiota than marine sponge species, Front. Microbiol., 2019, vol. 10. https://doi.org/10.3389/fmicb.2019.02799

  27. Gernert, C., Glockner, F.O., Krohne, G., et al., Microbial diversity of the freshwater sponge Spongilla lacustris, Microb. Ecol., 2005, vol. 50, pp. 206—212. https://doi.org/10.1007/s00248-004-0172-x

    Article  CAS  PubMed  Google Scholar 

  28. Costa, R., Keller-Costa, T., Gomes, N.C.M., et al., Evidence for selective bacterial community structuring in the freshwater sponge Ephydatia fluviatilis, Microb. Ecol., 2013, vol. 65, pp. 232—244. https://doi.org/10.1007/s00248-012-0102-2

    Article  PubMed  Google Scholar 

  29. Gaikwad, S., Shouche, Y.S., and Gade, W.N., Microbial community structure of two freshwater sponges using Illumina MiSeq sequencing revealed high microbial diversity, AMB Express, 2016, vol. 6, p. 40. https://doi.org/10.1186/s13568-016-0211-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kaluzhnaya, O.V., Kulakova, N.V., and Itskovich, V.B., Diversity of polyketide synthase (PKS) genes in metagenomic community of freshwater sponge Lubomirskia baicalensis, Mol. Biol. (Moscow), 2012, vol. 46, no. 6, pp. 790—795.

    Article  CAS  Google Scholar 

  31. Kaluzhnaya, O.V. and Itskovich, V.B., Distinctive features of the microbial diversity and the polyketide synthase genes spectrum in the community of the endemic Baikal sponge Swartschewskia papyracea, Russ. J. Genet., 2016, vol. 52, no. 1, pp. 38—48. https://doi.org/10.1134/S1022795416010099

    Article  CAS  Google Scholar 

  32. Kaluzhnaya, O.V., Lipko, I.A., Itskovich, V.B., et al., PCR-screening of bacteria isolated from freshwater sponge Lubomirskia baicalensis for detection of genes of secondary metabolites, Voda: Khim. Ekol., 2013, no. 7, pp. 70—74.

  33. Lipko, I.A., Kalyuzhnaya, O.V., Kravchenko, O.S., et al., Identification of polyketide synthase genes in genome of Pseudomonas fluorescens strain 28Bb-06 from freshwater sponge Baikalospongia bacillifera, Mol. Biol. (Moscow), 2012, vol. 46, no. 4, pp. 609—611. https://doi.org/10.1134/S0026893312040073

    Article  CAS  Google Scholar 

  34. Efremova, S.M., Sponges, in Annotirovannyi spisok fauny ozera Baikal i ego vodosbornogo basseina (An Annotated List of the Fauna of Lake Baikal and Its Catchment Area), Timoshkin, O.A., Ed., Novosibirsk: Nauka, 2001, vol. 1, pp. 177—190.

  35. Kaluzhnaya, O.V., Krivich, A.A., and Itskovich, V.B., Diversity of 16S rRNA genes in metagenomic community of the freshwater sponge Lubomirskia baicalensis, Russ. J. Genet., 2012, vol. 48, no. 8, pp. 855—858. https://doi.org/10.1134/S1022795412070058

    Article  CAS  Google Scholar 

  36. Kaluzhnaya, O.V., Itskovich, V.B., and McCormack, G.P., Phylogenetic diversity of bacteria associated with the endemic freshwater sponge Lubomirskia baicalensis, World J. Microb. Biotech., 2011, vol. 27, no. 8, pp. 1955—1959. https://doi.org/10.1007/s11274-011-0654

    Article  Google Scholar 

  37. Kaluzhnaya, O.V. and Itskovich, V.B., Phylogenetic diversity of microorganisms associated with the deepwater sponge Baikalospongia intermedia, Russ. J. Genet., 2014, vol. 50, no. 7, pp. 667—676. https://doi.org/10.1134/S1022795414060052

    Article  CAS  Google Scholar 

  38. Gladkikh, A.S., Kaluzhnaya, O.V., Belykh, O.I., et al., Analysis of bacterial communities of two Lake Baikal endemic sponge species, Microbiology (Moscow), 2014, vol. 83, no. 6, pp. 787—797.

    Article  CAS  Google Scholar 

  39. Seo, E.-Y., Jung, D., Belykh, O.I., et al., Comparison of bacterial diversity and species composition in three endemic Baikalian sponges, Ann. Limnol., 2016, vol. 52, pp. 27—32. https://doi.org/10.1051/limn/2015035

    Article  Google Scholar 

  40. Kulakova, N., Sakirko, M., Adelshin, R., et al., Brown rot syndrome and changes in the bacterial community of the Baikal sponge Lubomirskia baicalensis, Microb. Ecol., 2018, vol. 75, no. 4, pp. 1024—1034. https://doi.org/10.1007/s00248-017-1097-5

    Article  PubMed  Google Scholar 

  41. Kozhov, M.M., Biologiya ozera Baikal (Biology of Lake Baikal), Moscow: Akad. Nauk SSSR, 1962.

  42. Barrios-Llerena, M.E., Burja, A.M., and Wright, P.C., Genetic analysis of polyketide synthase and peptide synthetase genes in cyanobacteria as a mining tool for secondary metabolites, J. Ind. Microbiol. Biotechnol., 2007, vol. 34, pp. 443—456. https://doi.org/10.1007/s10295-007-0216-6

    Article  CAS  PubMed  Google Scholar 

  43. Chang, A.Y., Chau, V.W.Y., Landas, J.A., et al., Preparation of calcium competent Escherichia coli and heat-shock transformation, JEMI-Methods, 2017, vol. 1, pp. 22—25. https://jemi.microbiology.ubc.ca/node/127.

    Google Scholar 

  44. Maniatis, T., Fritsch, E.F., and Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor: Cold Spring Harbor Lab., 1982.

    Google Scholar 

  45. Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symp., 1999, vol. 41, pp. 95—98.

  46. Altschul, S.F., Warren, G., Miller, W., et al., Basic local alignment search tool, J. Mol. Biol., 1990, vol. 215, pp. 403—410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  47. Tamura, K., Dudley, J., Nei, M., and Kumar, S., MEGA4: molecular genetics analysis (MEGA) software version 4.0, Mol. Biol. Evol., 2007, vol. 24, pp. 1596—1599. https://doi.org/10.1093/molbev/msm092

    Article  CAS  PubMed  Google Scholar 

  48. Kaluzhnaya, O. and Itskovich, V., Diversity of potential producers of bioactive metabolites having polyketide nature in the Baikal sponge community of Rezinkovia echinata, Limnol. Freshwater Biol., 2020, no. 3, pp. 423—428. https://doi.org/10.31951/2658-3518-2020-A-3-423

  49. Fawley, K.P. and Fawley, M.W., Observations on the diversity and ecology of freshwater Nannochloropsis (Eustigmatophyceae), with descriptions of new taxa, Protist, 2007, vol. 158, no. 3, pp. 325—336. https://doi.org/10.1016/j.protis.2007.03.003

    Article  CAS  PubMed  Google Scholar 

  50. Fietz, S., Bleis, W., Hepperle, D., et al., First record of Nannochloropsis limnetica (Eustigmatophyceae) in the autotrophic phytoplankton from Lake Baikal, J. Phycol., 2005, vol. 41, no. 4, pp. 780—790. https://doi.org/10.1111/j.0022-3646.2005.04198.x

    Article  Google Scholar 

  51. Tamburic, B., Szaby, M., Tran, N.-A.T., et al., Action spectra of oxygen production and chlorophyll a fluorescence in the green microalga Nannochloropsis oculata, Bioresour. Technol., 2014, vol. 169, pp. 320—327. https://doi.org/10.1016/j.biortech.2014.07.008

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, R, Parniakov, O., Grimi, N., et al, Emerging techniques for cell disruption and extraction of valuable bio-molecules of microalgae Nannochloropsis sp., Bioprocess Biosyst. Eng., 2019, vol. 42, no. 2, pp. 173—186. https://doi.org/10.1007/s00449-018-2038-5

    Article  CAS  PubMed  Google Scholar 

  53. Hovde, B.T., Deodato, C.R., Hunsperger, H.M., et al., Genome sequence and transcriptome analyses of Chrysochromulina tobinii: metabolic tools for enhanced algal fitness in the prominent order Prymnesiales (Haptophyceae), PLoS Genet., 2015, vol. 11, no. 9. https://doi.org/10.1371/journal.pgen.1005469

  54. Deodatoa, C., Barlowb, S.B., Hovdec, B.T., et al., Naked Chrysochromulina (Haptophyta) isolates from lake and river ecosystems: an electron microscopic comparison including new observations on the type species of this taxon, PLoS Genet., 2019, vol. 40. https://doi.org/10.1016/j.algal.2019.101492

  55. Eikrem, W., Medlin, L. K., Henderiks, J., et al., Haptophyta, Handbook of the Protists, Archibald, J.M., Simpson, A.G.B., Slamovits, C.H., Eds., Cham: Springer, 2016. pp. 1—61. https://doi.org/10.1007/978-3-319-32669-6_38-1

    Book  Google Scholar 

  56. Izmest’eva, L.R., Silow, E.A., and Litchman, E., Long-term dynamics of Lake Baikal pelagic phytoplankton under climate change, Inland Water Biol., 2011, vol. 4, pp. 301—307. https://doi.org/10.1134/S1995082911030102

    Article  Google Scholar 

  57. Kaluzhnaya, O.V. and Itskovich, V.B., Phototrophic microorganisms in the symbiotic communities of Baikal sponges: diversity of psbA gene (encoding D1 protein of photosystem II) sequences, Mol. Biol. (Moscow), 2017, vol. 51, no. 3, pp. 372—378. https://doi.org/10.1134/S0026893317030086

    Article  CAS  Google Scholar 

  58. Yi, Z., Berney, C., Hartikainen, H., et al., High-throughput sequencing of microbial eukaryotes in Lake Baikal reveals ecologically differentiated communities and novel evolutionary radiations, FEMS Microbiol. Ecol., 2017, vol. 93, no. 8. https://doi.org/10.1093/femsec/fix073

  59. Cabello-Yeves, P.J., Zemskaya, T.I., Rosselli, R., et al., Genomes of novel microbial lineages assembled from the sub-ice waters of Lake Baikal, Appl. Environ. Microbiol., 2018, vol. 84, no. 1. https://doi.org/10.1128/AEM.02132-17

  60. Zhang, H., Sekiguchi, Y., Hanada, S., et al., Gemmatimonas aurantiaca gen. nov., sp. nov., a Gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov., Int. J. Syst. Evol. Microbiol., 2003, vol. 53, pp. 1155—1163. https://doi.org/10.1099/ijs.0.02520-0

    Article  CAS  PubMed  Google Scholar 

  61. Zeng, Y., Selyanin, V., Lukes, M., et al., Characterization of the microaerophilic, bacteriochlorophyll a-containing bacterium Gemmatimonas phototrophica sp. nov., and emended descriptions of the genus Gemmatimonas and Gemmatimonas aurantiaca, Int. J. Syst. Evol. Microbiol., 2015, vol. 65, pp. 2410—2419. https://doi.org/10.1111/1758-2229.12363

    Article  CAS  PubMed  Google Scholar 

  62. Zeng, Y., Baumbach, J., Barbosa, E.G.V., et al., Metagenomic evidence for the presence of phototrophic Gemmatimonadetes bacteria in diverse environments, Environ. Microbiol. Rep., 2016, vol. 8, pp. 139–149. https://doi.org/10.1111/1758-2229.12363

    Article  CAS  PubMed  Google Scholar 

  63. Zeng, Y., Nupur, N., Wu, N., et al., Gemmatimonas groenlandica sp. nov. is an aerobic anoxygenic phototroph in the phylum Gemmatimonadetes, Front. Microbiol., 2021. https://doi.org/10.3389/fmicb.2020.606612

  64. Parfenova, V.V., Gladkikh, A.S., and Belykh, O.I., Comparative analysis of biodiversity in the planktonic and biofilm bacterial communities in Lake Baikal, Microbiology (Moscow), 2013, vol. 82, no. 1, pp. 91—101. https://doi.org/10.7868/S0026365613010126

    Article  CAS  Google Scholar 

  65. Hu, P., Lang, J., Wawrousek, K., et al., Draft genome sequence of Rubrivivax gelatinosus CBS, J. Bacteriol., 2012, vol. 194, no. 12, p. 3262. https://doi.org/10.1128/JB.00515-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nagashima, S., Kamimura, A., Shimizu, T., et al., Complete genome sequence of phototrophic betaproteobacterium Rubrivivax gelatinosus IL144, J. Bacteriol., 2012, vol. 194, no. 13, pp. 3541—3542. https://doi.org/10.1128/JB.00511-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kashkak, E.S., Gaisin, V.A., Dagurova, O.P., et al., Formation and functioning of the microbial mats in the Khoito-Gol mineral spring (Eastern Sayan), Izv. Samarsk. Nauchn. Tsentra Ross. Akad. Nauk, 2016, vol. 18, no. 2, pp. 397—402.

    Google Scholar 

  68. Hisada, T., Okamura, K., and Hiraishi, A., Isolation and characterization of phototrophic purple nonsulfur bacteria from Chloroflexus and cyanobacterial mats in hot springs, Microbes Environ., 2007, vol. 22, no. 4, pp. 405—411. https://doi.org/10.1264/jsme2.22.405

  69. Hesselsoe, M., Boysen S., Iversen, N., et al., Degradation of organic pollutants by methane grown microbial consortia, Biodegradation, 2005, vol. 16, no. 5, pp. 435—448. https://doi.org/10.1007/s10532-004-4721-2

    Article  CAS  PubMed  Google Scholar 

  70. Sukhanova, E.V., Shtykova, Y.R., Suslova, M.Y., et al., Diversity and physiological and biochemical properties of heterotrophic bacteria isolated from Lake Baikal epilithic biofilms, Microbiology (Moscow), 2019, vol. 88, no. 3, pp. 324—334. https://doi.org/10.1134/S0026261719030147

    Article  CAS  Google Scholar 

  71. Wang, Z., Li, W., Li, H., et al., Phylogenomics of Rhodocyclales and its distribution in wastewater treatment systems, Sci. Rep., 2020, vol. 10, no. 1. https://doi.org/10.1038/s41598-020-60723-x

  72. Youssef, N.H., Farag, I.F., Rinke, C., et al., In silico analysis of the metabolic potential and niche specialization of candidate phylum “Latescibacteria” (WS3), PLoS One, 2015, vol. 10, no. 6. https://doi.org/10.1371/journal.pone.0127499

  73. Farag, I.F., Youssef, N.H., Elshahed, M.S., Global distribution patterns and pangenomic diversity of the candidate phylum “Latescibacteria” (WS3), Appl. Environ. Microbiol., 2017, vol. 83, no. 10. https://doi.org/10.1128/AEM.00521-17

  74. Li, Y., Naman, C.B., Alexander, K.L., et al., The chemistry, biochemistry and pharmacology of marine natural products from Leptolyngbya, a chemically endowed genus of Cyanobacteria, Mar. Drugs, 2020, vol. 18, no. 10. https://doi.org/10.3390/md18100508

  75. Belykh, O.I., Tikhonova, I.V., Kuz’min, A.V., et al., Toxin-producing cyanobacteria in Lake Baikal and reservoirs of Baikal region, Teor. Prikl. Ekol., 2020, no. 1, pp. 21—27. https://doi.org/10.25750/1995-4301-2020-1-021-027

  76. Kalyuzhnaya, O.V., Itskovich, V.B., and Kupchinskii, A.B., Molecular identification of cyanobacteria forming mucous fouling at the surface of endemic sponge Lubomirskia baicalensis, Voda: Khim. Ekol., 2017, no. 1, pp. 26—33.

  77. Belykh, O.I., Tikhonova, I.V., Sorokovikova, E.G., et al., Picoplanctonic Cyanoprokaryota of the genera Synechococcus Nageli and Cyanobium Rippka et Cohen-Baz. from Lake Baikal, Russia, Al’gologiya, 2011, vol. 21, pp. 36—50.

    Google Scholar 

  78. Erwin, P.M., Lypez-Legentil, S., Gonzalez-Pech, R., et al., A specific mix of generalists: bacterial symbionts in Mediterranean Ircinia spp., FEMS Microb. Ecol., 2012, vol. 79, no. 3, pp. 619—637. https://doi.org/10.1111/j.1574-6941.2011.01243.x

    Article  CAS  Google Scholar 

  79. Kaluzhnaya, O.V. and Itskovich, V.B., Bleaching of Baikalian sponge affects the taxonomic composition of symbiotic microorganisms, Russ. J. Genet., 2015, vol. 51, no. 11, pp. 1153—1157. https://doi.org/10.1134/S1022795415110071

    Article  CAS  Google Scholar 

  80. Kulakova, N.V., Denikina, N.N., and Belikov, S.I., Diversity of bacterial photosymbionts in Lubomirskiidae sponges from Lake Baikal, Int. J. Biodiversity, 2014, vol. 2014. https://doi.org/10.1155/2014/152097

  81. Kehr, J.-C., Picchi, D.G., Dittmann, E., et al., Natural product biosynthesis in cyanobacteria: a treasure trove of unique enzymes, Beilstein. J. Org. Chem., 2011, vol. 7, pp. 1622—1635. https://doi.org/10.3762/bjoc.7.191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Newton, R.J., Jones, S.E., Eiler, A., et al., A guide to the natural history of freshwater lake bacteria, Microb. Mol. Biol. Rev., 2011, vol. 75, no. 1, pp. 14—49.

    Article  CAS  Google Scholar 

  83. Fuerst, J.A. and Sagulenko, E., Beyond the bacterium: planctomycetes challenge our concepts of microbial structure and function, Nat. Rev. Microbiol., 2011, vol. 9, no. 6, pp. 403—413. https://doi.org/10.1038/nrmicro2578

    Article  CAS  PubMed  Google Scholar 

  84. Wiegand, S., Jogler, M., and Jogler, C., On the maverick planctomycetes, FEMS Microbiol. Rev., 2018, vol. 42, no. 6, pp. 739—760. https://doi.org/10.1093/femsre/fuy029

    Article  CAS  PubMed  Google Scholar 

  85. Costa, R., Keller-Costa, T., Gomes, N.C.M., et al., Evidence for selective bacterial community structuring in the freshwater sponge Ephydatia fluviatilis, Microb. Ecol., 2013, vol. 65, pp. 232—244. https://doi.org/10.1007/s00248-012-0102-2

    Article  PubMed  Google Scholar 

  86. Gaikwad, S., Shouche, Y.S., and Gade, W.N., Microbial community structure of two freshwater sponges using Illumina MiSeq sequencing revealed high microbial diversity, AMB Express, 2016, vol. 6, no. 1. https://doi.org/10.1186/s13568-016-0211-2

Download references

Funding

This work was supported by the Russian Foundation for Basic Research and the Government of the Irkutsk Oblast as part of the project no. 20-44-380023 r_a (molecular biological research) and the state budget funding, project no. 0279-2021-0011 “Genomics of Symbiosis. Investigation of Interactions between the Host and Consortia of Microorganisms and Parasites” (provision of experimental equipment).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Kaluzhnaya.

Ethics declarations

Conflict of interest. The authors declare they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals have been followed.

Additional information

Translated by A. Lisenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaluzhnaya, O.V., Itskovich, V.B. Features of Diversity of Polyketide Synthase Genes in the Community of Freshwater Sponge Baikalospongia fungiformis. Russ J Genet 58, 336–346 (2022). https://doi.org/10.1134/S1022795422030061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795422030061

Keywords:

Navigation