Skip to main content
Log in

qPCR Identification of the kdr Allele F1534C in Voltage-Gated Sodium Channel Gene (vgsc) of the Major Mosquito Vectors Aedes aegypti and Aedes albopictus in Northern and Central Vietnam

  • ANIMAL GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Pyrethroid insecticides are currently the main tool for controlling major mosquito vectors of hemorrhagic fevers—Aedes aegypti and Ae. albopictus. The widespread use of insecticides has led to the spread of insecticide resistance mutations (or kdr mutations) in mosquito populations. A population genetic study of kdr mutations provides information on changes in the genetic structure of mosquito populations as a result of anthropogenic impact and may be useful for making epidemiological prediction for the prevalence of Dengue and Chikungunya fevers. Multiplex PCR is traditionally used to identify kdr mutations in combination with sequencing of PCR fragments. We have developed a more productive method for identifying kdr mutations based on the SNP polymorphism analysis in the vgsc gene and qPCR. We identified the kdr mutation F1534C in Aedes aegypti and Ae. albopictus from the Ha Tinh province of Vietnam. In Ae. albopictus populations from Vietnam, this mutation was identified for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Lee, J.S., Mogasale, V., Lim, J., et al., A multi-country study of the economic burden of dengue fever: Vietnam, Thailand, and Colombia, PLoS Neglected Trop. Dis., 2017, vol. 11, no. 10. https://doi.org/10.1371/journal.pntd.0006037

  2. Halstead, S.B., Voulgaropoulos, E., Tien, N.H., et al., Dengue hemorrhagic fever in South Vietnam: report of the 1963 outbreak, Am. J. Trop. Med. Hyg., 1965, vol. 14, pp. 819—830. https://doi.org/10.4269/ajtmh.1965.14.819

    Article  CAS  PubMed  Google Scholar 

  3. Nguyen, V.-D., Ngueyn, M.-H., Pham, T.-K., et al., Insecticide susceptibility of Aedes aegypti and Aedes albopictus in Ha Noi and QuangNinh, 2011, J. Prev. Med., 2012, vol. 4, pp. 63—70. https://doi.org/10.1186/1756-3305-4-79

    Article  Google Scholar 

  4. Tran, T.-D., Nguyen, V.-D., Vu, D.-C., and Do, H.-T., Mapping insecticide resistance in dengue vectors in the Northern Viet Nam, 2010—2013, Vector Biol. J., 2016, vol. 1, p. 1. https://doi.org/10.4172/2473-4810.1000105

    Article  Google Scholar 

  5. Narahashi, T., Nerve membrane ion channels as the target site of insecticides, Mini Rev. Med. Chem., 2002, vol. 2, pp. 419—432. https://doi.org/10.2174/1389557023405927

    Article  CAS  PubMed  Google Scholar 

  6. Chareonviriyaphap, T., Bangs, M.J., Suwonkerd, W., et al., Review of insecticide resistance and behavioral avoidance of vectors of human diseases in Thailand, Parasites Vectors, 2013, vol. 6, p. 280. https://doi.org/10.1186/1756-3305-6-280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hemingway, J. and Ranson, H., Insecticide resistance in insect vectors of human disease, Annu. Rev. Entomol., 2010, vol. 45, pp. 371—391. https://doi.org/10.1146/annurev.ento.45.1.371

    Article  Google Scholar 

  8. Ishak, I.H., Kamgang, B., Ibrahim, S.S., et al., Pyrethroid resistance in Malaysian populations of dengue vector Aedes aegypti is mediated by CYP9 family of cytochrome P450 genes, PLoS Neglected Trop. Dis., 2017, vol. 11. https://doi.org/10.1371/journal.pntd.0005302

  9. Catterall, W.A., From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels, Neuron, 2000, vol. 26, no. 1, pp. 13—25. https://doi.org/10.1016/S0896-6273(00)81133-2

    Article  CAS  PubMed  Google Scholar 

  10. Bingham, G., Strode, C., Tran, L., et al., Can piperonyl butoxide enhance the efficacy of pyrethroids against pyrethroid-resistant Aedes aegypti?, Trop. Med. Int. Health, 2011, vol. 16, pp. 492—500. https://doi.org/10.1111/j.1365-3156.2010.02717.x

    Article  CAS  PubMed  Google Scholar 

  11. Kawada, H., Higa, Y., Komagata, O., et al., Widespread distribution of a newly found point mutation in voltage-gated sodium channel in pyrethroid-resistant Aedes aegypti populations in Vietnam, PLoS Neglected Trop. Dis., 2009, vol. 3. https://doi.org/10.1371/journal.pntd.0000527

  12. Kasai, S., Ng, L., Lam-Phua, S., et al., First detection of a putative knockdown resistance gene in major mosquito vector, Aedes albopictus,Jap. J. Infect. Dis., 2011, vol. 64, no. 3, pp. 217—221.

    CAS  Google Scholar 

  13. Chen, H., Li, K., Wang, X., et al., First identification of kdr allele F1534S in VGSC gene and its association with resistance to pyrethroid insecticides in Aedes albopictus populations from Haikou City, Hainan Island, China, Infect. Dis. Poverty, 2016, vol. 5, no. 31, p. 8. https://doi.org/10.1186/s40249-016-0125-x

    Article  Google Scholar 

  14. Xu, J., Bonizzoni, M., Zhong, D., et al., Multi-country survey revealed prevalent and novel F1534S mutation in voltage-gated sodium channel (VGSC) gene in Aedes albopictus,PLoS Neglected Trop. Dis., 2016, vol. 10, no. 5. e0004696. https://doi.org/10.1371/journal.pntd.0004696

    Article  CAS  Google Scholar 

  15. Li, Y., Xu, J., Zhong, D., et al., Evidence for multiple-insecticide resistance in urban Aedes albopictus populations in southern China, Parasites Vectors, 2018, vol. 11, no. 1, p. 4. https://doi.org/10.1186/s13071-017-2581-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wuliandari, J.R., Lee, S.F., White, V.L., et al., Association between three mutations, F1565C, V1023G and S996P, in the voltage-sensitive sodium channel gene and knockdown resistance in Aedes aegypti from Yogyakarta, Indonesia, Insects, 2015, vol. 6, pp. 658—685. https://doi.org/10.3390/insects6030658

    Article  PubMed  Google Scholar 

  17. Brengues, C., Hawkes, N.J., Chandre, F., et al., Pyrethroid and DDT cross-resistance in Aedes aegypti is correlated with novel mutations in the voltage-gated sodium channel gene, Med. Vet. Entomol., 2003, vol. 17, pp. 87—94. https://doi.org/10.1046/j.1365-2915.2003.00412.x

    Article  CAS  PubMed  Google Scholar 

  18. Hamid, P.H., Prastowo, J., Ghiffari, A., et al., Aedes aegypti resistance development to commonly used insecticides in Jakarta, Indonesia, PLoS One, 2017, vol. 12, no. 12. https://doi.org/10.1371/journal.pone.0189680

  19. Saingamsook, J., Saeung, A., Yanola, J., et al., A multiplex PCR for detection of knockdown resistance mutations, V1016G and F1534C, in pyrethroid-resistant Aedes aegypti,Parasites Vectors, 2017, vol. 10, p. 465. https://doi.org/10.1186/s13071-017-2416-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sayono, S., Hidayati, A.P.N., Fahri, S., et al., Distribution of voltage-gated sodium channel (Nav) alleles among the Aedes aegypti populations in central Java province and its association with resistance to pyrethroid insecticides, PLoS One, 2016, vol. 11. https://doi.org/10.1371/journal.pone.0150577

  21. Hamid, P.H., Prastowo, J., Widyasari, A., et al., Knockdown resistance (kdr) of the voltage-gated sodium channel gene of Aedes aegypti population in Denpasar, Bali, Indonesia, Parasites Vectors, 2017, vol. 10, p. 283. https://doi.org/10.1186/s13071-017-2215-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yanola, J., Somboon, P., Walton, C., et al., High-throughput assays for detection of the F1534C mutation in the voltage-gated sodium channel gene in permethrin-resistant Aedes aegypti and the distribution of this mutation throughout Thailand, Trop. Med. Int. Health, 2011, vol. 16, pp. 501—509. https://doi.org/10.1111/j.1365-3156.2011.02725.x

    Article  CAS  PubMed  Google Scholar 

  23. Ishak, I.H., Jaal, Z., Ranson, H., et al., Contrasting patterns of insecticide resistance and knockdown resistance (kdr) in the dengue vectors Aedes aegypti and Aedes albopictus from Malaysia, Parasites Vectors, 2015, vol. 8, p. 181. https://doi.org/10.1186/s13071-015-0797-2

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kawada, H., Oo, S.Z.M., Thaung, S., et al., Co-occurrence of point mutations in the voltage-gated sodium channel of pyrethroid-resistant Aedes aegypti populations in Myanmar, PLoS Neglected Trop. Dis., 2014, vol. 8, no. 7. https://doi.org/10.1371/journal.pntd.0003032

  25. Kasai, S., Komagata, O., Itokawa, K., et al., Mechanisms of pyrethroid resistance in the dengue mosquito vector, Aedes aegypti: target site insensitivity, penetration, and metabolism, PLoS Neglected Trop. Dis., 2014, vol. 8. https://doi.org/10.1371/journal.pntd.0002948

  26. Rajatileka, S., Black, W.C., Saavedra-Rodriguez, K., et al., Development and application of a simple colorimetric assay reveals widespread distribution of sodium channel mutations in Thai populations of Aedes aegypti,Acta Trop., 2008, vol. 108, pp. 54—57. https://doi.org/10.1016/j.actatropica.2008.08.004

    Article  CAS  PubMed  Google Scholar 

  27. Pang, S.C., Chiang, L.P., Tan, C.H., et al., Low efficacy of delthamethrin-treated net against Singapore Aedes aegypti is associated with kdr-type resistance, Trop. Biomed., 2015, vol. 32, pp. 140—150.

    CAS  PubMed  Google Scholar 

  28. Srisawat, R., Komalamisra, N., Eshita, Y., et al., Point mutations in domain II of the voltage-gated sodium channel gene in deltamethrin-resistant Aedes aegypti (Diptera: Culicidae), Appl. Entomol. Zool., 2010, vol. 45, no. 2, pp. 275—282. https://doi.org/10.1303/aez.2010.275

    Article  CAS  Google Scholar 

  29. Yanola, J., Somboon, P., Walton, C., et al., A novel F1552/C1552 point mutation in the Aedes aegypti voltage-gated sodium channel gene associated with permethrin resistance, Pestic Biochem. Phys., 2010, vol. 96, p. 127. https://doi.org/10.1016/j.pestbp.2009.10.005

    Article  CAS  Google Scholar 

  30. Plernsub, S., Saingamsook, J., Yanola, J., et al., Additive effect of knockdown resistance mutations, S989P, V1016G and F1534C, in a heterozygous genotype conferring pyrethroid resistance in Aedes aegypti in Thailand, Parasites Vectors, 2016, vol. 9, p. 417. https://doi.org/10.1186/s13071-016-1713-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Srisawat, R., Komalamisra, N., Apiwathnasorn, C., et al., Field-collected permethrin-resistant Aedes aegypti from central Thailand contain point mutations in the domain IIS6 of the sodium channel gene (kdr), Southeast Asian J. Trop. Med. Pub. Health, 2012, vol. 43, pp. 1380—1386.

    CAS  Google Scholar 

  32. Huong, V.D. and Ngoc, N.T.B., Susceptibility of Aedes aegypti to insecticides in South Vietnam, Dengue Bull., 1999, vol. 23, pp. 85—88.

    Google Scholar 

  33. Huong, V.D., Ngoc, N.T.B., Hien, D.T., et al., Susceptibility of Aedes aegypti to insecticides in Vietnam, Dengue Bull., 2004, vol. 28, pp. 179—183.

    Google Scholar 

  34. Kawada, H., Higa, Y., Nguyen, Y.T., et al., Nationwide investigation of the pyrethroid susceptibility of mosquito larvae collected from used tires in Vietnam, PLoS Neglected Trop. Dis., 2009, vol. 3. https://doi.org/10.1371/journal.pntd.0000391

  35. Stenhouse, S.A., Plernsub, S., Yanola, J., et al., Detection of the V1016G mutation in the voltage-gated sodium channel gene of Aedes aegypti (Diptera: Culicidae) by allele-specific PCR assay, and its distribution and effect on deltamethrin resistance in Thailand, Parasites Vectors, 2013, vol. 6, p. 253. https://doi.org/10.1186/1756-3305-6-253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Lab., 1989, 2nd ed.

    Google Scholar 

  37. Untergasser, A., Cutcutache, I., Koressaar, T., et al., Primer3—new capabilities and interfaces, Nucleic Acids Res., 2012, vol. 40, no. 15. e115. https://doi.org/10.1093/nar/gks596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Folmer, O., Black, M., Hoeh, W., et al., DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates, Mol. Mar. Biol. Biotechnol., 1994, vol. 3, pp. 294—297.

    CAS  PubMed  Google Scholar 

  39. World Health Organization, Monitoring and Managing Insecticide Resistance in Aedes mosquito Populations: Interim Guidance for Entomologists, Geneva: World Health Organization, 2016.

  40. Jeyaprakash, A. and Hoy, M.A., Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of sixty-three arthropod species, Insect. Mol. Biol., 2000, vol. 9, pp. 393—405. https://doi.org/10.1046/j.1365-2583.2000.00203.x

    Article  CAS  PubMed  Google Scholar 

  41. Hoffmann, A.A., Montgomery, B.L., Popovici, J., et al., Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission, Nature, 2011, vol. 476, no. 7361, pp. 454—457. https://doi.org/10.1038/nature10356

    Article  CAS  PubMed  Google Scholar 

  42. Nguyen, T.H., Le Nguyen, H., Nguyen, T.Y., et al., Field evaluation of the establishment potential of wMelPop Wolbachia in Australia and Vietnam for dengue control, Parasites Vectors, 2015, vol. 8, p. 563. https://doi.org/10.1186/s13071-015-1174-x

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was carried out within the scope of government order no. 0112-2019-0002 for the topic “Study of Autonomic Genetic Element Variability in Insects and Development of New Markers of Genome Instability” (АААА-А16-116111610180-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Andrianov.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This study was carried out in accordance with all applicable international, national, and/or institutional principles of animal treatment.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

AUTHOR CONTRIBUTIONS

All authors made equal contribution to the study.

Additional information

Translated by M. Bibov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vu, T.X., Andrianov, B.V., Vu, D.C. et al. qPCR Identification of the kdr Allele F1534C in Voltage-Gated Sodium Channel Gene (vgsc) of the Major Mosquito Vectors Aedes aegypti and Aedes albopictus in Northern and Central Vietnam. Russ J Genet 56, 460–469 (2020). https://doi.org/10.1134/S1022795420040158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795420040158

Keywords:

Navigation