Skip to main content
Log in

Modern Molecular Genetic Methods for Age Estimation in Forensics

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

This article presents a review of modern molecular genetic methods for estimating the age of an individual based on the analysis of various tissue samples. Data on age estimation are given: by the rate of accumulation of mutations in mitochondrial DNA, by telomere length, by the frequency of DNA repeats, by the analysis of changes in gene expression, by estimating DNA methylation levels. The analysis of the considered sources makes it possible to conclude that the estimation of sample methylation profiles is the most promising direction of studies in order to increase the accuracy of age prediction in conditions of limited quantity and quality of the source material. The development of new mathematical models will make it possible to increase the accuracy and to decrease the average prediction error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Freire-Aradas, A., Phillips, C., and Lareu, M.V., Forensic individual age estimation with DNA: from initial approaches to methylation tests, Forensic Sci. Rev., 2017, vol. 29, no. 2, pp. 121–144.

    CAS  PubMed  Google Scholar 

  2. Alkass, K., Buchholz, B.A., Ohtani, S.T., et al., Age estimation in forensic sciences: application of combined aspartic acid racemization and radiocarbon analysis, Mol. Cell. Proteomics, 2010, vol. 9, no. 5, pp. 1022–1030. https://doi.org/10.1074/mcp.M900525-MCP200

    Article  CAS  PubMed  Google Scholar 

  3. Dumache, R., Ciocan, V., Muresan, C., et al., Molecular DNA analysis in forensic identification, Clin. Lab., 2016, vol. 62, nos. 1–2, pp. 245–248.

    CAS  PubMed  Google Scholar 

  4. Lee, S.B., Crouse, C.A., and Kline, M.C., Optimizing storage and handling of DNA extracts, Forensic Sci. Rev., 2010, vol. 22, no. 2, pp. 131–144. https://doi.org/10.1201/b15361

    Article  CAS  PubMed  Google Scholar 

  5. Holland, N.T., Smith, M.T., Eskenazi, B., and Bastaki, M., Biological sample collection and processing for molecular epidemiological studies, Mutat. Res., 2003, vol. 543, no. 3, pp. 217–234. https://doi.org/10.1016/S1383-5742(02)00090-X

    Article  CAS  PubMed  Google Scholar 

  6. Pereira, F., Carneiro, J., and Amorim, A., Identification of species with DNA-based technology: current progress and challenges, Recent Pat. DNA Gene Seq., 2008, vol. 2, no. 3, pp. 187–199. https://doi.org/10.2174/187221508786241738

    Article  CAS  PubMed  Google Scholar 

  7. Kayser, M., Forensic DNA phenotyping: predicting human appearance from crime scene material for investigative purposes, Forensic Sci. Int. Genet., 2015, vol. 18, pp. 33–48. https://doi.org/10.1016/j.fsigen.2015.02.003

    Article  CAS  PubMed  Google Scholar 

  8. Meissner, C. and Ritz-Timme, S., Molecular pathology and age estimation, Forensic Sci. Int., 2010, vol. 203, nos. 1–3, pp. 34–43. https://doi.org/10.1016/j.forsciint.2010.07.010

    Article  CAS  PubMed  Google Scholar 

  9. Zapico, S.C. and Ubelaker, D.H., Relationship between mitochondrial DNA mutations and aging: estimation of age-at-death, J. Gerontol. A Biol. Sci. Med. Sci., 2016, vol. 71, no. 4, pp. 445–450. https://doi.org/10.1093/gerona/glv115

    Article  CAS  PubMed  Google Scholar 

  10. Zapico, S.C. and Ubelaker, D.H., mtDNA Mutations and their role in aging, diseases, and forensic sciences, Aging Dis., 2013, vol. 4, no. 6, pp. 364–380. https://doi.org/10.14336/AD.2013.0400364

    Article  PubMed  PubMed Central  Google Scholar 

  11. Theves, C., Keyser-Tracqui, C., Crubezy, E., et al., Detection and quantification of the age-related point mutation A189G in the human mitochondrial DNA, J. Forensic Sci., 2006, vol. 51, no. 4, pp. 865–873. https://doi.org/10.1111/j.1556-4029.2006.00163.x

    Article  CAS  PubMed  Google Scholar 

  12. Lacan, M., Theves, C., Keyser, C., et al., Detection of age-related duplications in mtDNA from human muscles and bones, Int. J. Legal Med., 2011, vol. 125, no. 2, pp. 293–300. https://doi.org/10.1007/s00414-010-0440-x

    Article  PubMed  Google Scholar 

  13. Damas, J., Samuels, D.C., Carneiro, J., et al., Mitochondrial DNA rearrangements in health and disease–a comprehensive study, Hum. Mutat., 2014, vol. 35, no. 1, pp. 1–14. https://doi.org/10.1002/humu.22452

    Article  CAS  PubMed  Google Scholar 

  14. Meissner, C., von Wurmb, N., Schimansky, B., and Oehmichen, M., Estimation of age at death based on quantitation of the 4977-bp deletion of human mitochondrial DNA in skeletal muscle, Forensic Sci. Int., 1999, vol. 105, no. 2, pp. 115–124. https://doi.org/10.1016/S0379-0738(99)00126-7

    Article  CAS  PubMed  Google Scholar 

  15. von Wurmb-Schwark, N., Higuchi, R., Fenech, A.P., et al., Quantification of human mitochondrial DNA in a real time PCR1, Forensic Sci. Int., 2002, vol. 126, no. 11, pp. 34–39. https://doi.org/10.1016/S0379-0738(02)00026-9

    Article  CAS  PubMed  Google Scholar 

  16. Meissner, C., Bruse, P., Mohamed, S.A., et al., The 4977 bp deletion of mitochondrial DNA in human skeletal muscle, heart and different areas of the brain: a useful biomarker or more?, Exp. Gerontol., 2008, vol. 43, no. 7, pp. 645–652. https://doi.org/10.1016/j.exger.2008.03.004

    Article  CAS  PubMed  Google Scholar 

  17. Liu, V.W., Zhang, C., and Nagley, P., Mutations in mitochondrial DNA accumulate differentially in three different human tissues during ageing, Nucleic Acids Res., 1998, vol. 26, no. 5, pp. 1268–1275. https://doi.org/10.1093/nar/26.5.1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Polisecki, E.Y., Schreier, L.E., Ravioli, J., and Corach, D., Common mitochondrial DNA deletion associated with sudden natural death in adults, J. Forensic Sci., 2004, vol. 49, no. 6, pp. 1335–1338. https://doi.org/10.1520/JFS2004073

    Article  CAS  PubMed  Google Scholar 

  19. He, S. and Sharpless, N.E., Senescence in health and disease, Cell, 2017, vol. 169, no. 6, pp. 1000–1011. https://doi.org/10.1016/j.cell.2017.05.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tsuji, A., Ishiko, A., Takasaki, T., and Ikeda, N., Estimating age of humans based on telomere shortening, Forensic Sci. Int., 2002, vol. 126, no. 3, pp. 197–199. https://doi.org/10.1016/S0379-0738(02)00086-5

    Article  CAS  PubMed  Google Scholar 

  21. O’Callaghan, N.J. and Fenech, M., A quantitative PCR method for measuring absolute telomere length, Biol. Proced. Online, 2011, vol. 13, p. 3. https://doi.org/10.1186/1480-9222-13-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aubert, G., Hills, M., and Lansdorp, P.M., Telomere length measurement-caveats and a critical assessment of the available technologies and tools, Mutat. Res., 2012, vol. 730, nos. 1–2, pp. 59–67. https://doi.org/10.1016/j.mrfmmm.2011.04.003

    Article  CAS  PubMed  Google Scholar 

  23. Montpetit, A.J., Alhareeri, A.A., Montpetit, M., et al., Telomere length: a review of methods for measurement, Nurs. Res., 2014, vol. 63, no. 4, pp. 289–299. https://doi.org/10.1097/NNR.0000000000000037

    Article  PubMed  PubMed Central  Google Scholar 

  24. Srettabunjong, S., Satitsri, S., Thongnoppakhun, W., and Tirawanchai, N., The study on telomere length for age estimation in a Thai population, Am. J. Forensic Med. Pathol., 2014, vol. 35, no. 2, pp. 148–153. https://doi.org/10.1097/PAF.0000000000000095

    Article  PubMed  Google Scholar 

  25. Karlsson, A.O., Svensson, A., Marklund, A., and Holmlund, G., Estimating human age in forensic samples by analysis of telomere repeats, Forensic Sci. Int.: Genet. Suppl. Ser., 2008, vol. 1, no. 1, pp. 569–571. https://doi.org/10.1016/j.fsigss.2007.10.153

    Article  Google Scholar 

  26. Marquez-Ruiz, A.B., Gonzalez-Herrera, L., and Valenzuela, A., Usefulness of telomere length in DNA from human teeth for age estimation, Int. J. Legal Med., 2018, vol. 132, no. 2, pp. 353–359. 2017. https://doi.org/10.1007/s00414-017-1595-5

    Article  Google Scholar 

  27. Mathur, M.B., Epel, E., Kind, S., et al., Perceived stress and telomere length: a systematic review, meta-analysis, and methodologic considerations for advancing the field, Brain Behav. Immun., 2016, vol. 54, pp. 158–169. https://doi.org/10.1016/j.bbi.2016.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ling, H., Vincent, K., Pichler, M., et al., Junk DNA and the long non-coding RNA twist in cancer genetics, Oncogene, 2015, vol. 34, no. 39, pp. 5003–5011. https://doi.org/10.1038/onc.2014.456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Panneerchelvam, S. and Norazmi, M.N., Forensic DNA profiling and database, Malays. J. Med. Sci., 2003, vol. 10, no. 2, pp. 20–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zubakov, D., Liu, F., Kokmeijer, I., et al., Human age estimation from blood using mRNA, DNA methylation, DNA rearrangement, and telomere length, Forensic Sci. Int. Genet., 2016, vol. 24, pp. 33–43. https://doi.org/10.1016/j.fsigen.2016.05.014

    Article  CAS  PubMed  Google Scholar 

  31. Vennemann, M. and Koppelkamm, A., mRNA profiling in forensic genetics: 1. Possibilities and limitations, Forensic Sci. Int., 2010, vol. 203, nos. 1–3, pp. 71–75. https://doi.org/10.1016/j.forsciint.2010.07.006

    Article  CAS  PubMed  Google Scholar 

  32. Wang, Z., Zhang, J., Luo, H., et al., Screening and confirmation of microRNA markers for forensic body fluid identification, Forensic Sci. Int. Genet., 2013, vol. 7, no. 1, pp. 116–123. https://doi.org/10.1016/j.fsigen.2012.07.006

    Article  CAS  PubMed  Google Scholar 

  33. Aryani A. and Denecke B. In vitro application of ribonucleases: comparison of the effects on mRNA and miRNA stability, BMC Res. Notes, 2015, vol. 8, no. 164, pp. 1–9. https://doi.org/10.1186/s13104-015-1114-z

  34. Hanson, E., Lubenow, H., and Ballantyne, J., Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs, Anal. Biochem., 2009, vol. 387, no. 2, pp. 303–314. https://doi.org/10.1016/j.ab.2009.01.037

    Article  CAS  Google Scholar 

  35. Bavykin, A., Circulating microRNAs in the identification of biological fluids: a new approach to standardization of expression-based diagnostics, Mol. Biol. (Moscow) 2017, vol. 51, no. 4, pp. 506–513. https://doi.org/10.1134/S0026893317040045

    Article  CAS  Google Scholar 

  36. Silva, S.S., Lopes, C., Teixeira, A.L., et al., Forensic miRNA: potential biomarker for body fluids?, Forensic Sci. Int. Genet., 2015, vol. 14, pp. 1–10. https://doi.org/10.1016/j.fsigen.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  37. Sijen, T., Molecular approaches for forensic cell type identification: on mRNA, miRNA, DNA methylation and microbial markers, Forensic Sci. Int. Genet., 2015, vol. 18, pp. 21–32. https://doi.org/10.1016/j.fsigen.2014.11.015

    Article  CAS  PubMed  Google Scholar 

  38. Peters, M.J., Joehanes, R., Pilling, L.C., et al., The transcriptional landscape of age in human peripheral blood, Nat. Commun., 2015, vol. 6, p. 8570. https://doi.org/10.1038/ncomms9570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hannum, G., Guinney, J., Zhao, L., et al., Genome-wide methylation profiles reveal quantitative views of human aging rates, Mol. Cell, 2013, vol. 49, no. 2, pp. 359–367. https://doi.org/10.1016/j.molcel.2012.10.016

    Article  CAS  PubMed  Google Scholar 

  40. Horvath, S., DNA methylation age of human tissues and cell types, Genome Biol., 2013, vol. 14, no. 10, p. R115. https://doi.org/10.1186/s13059-015-0649-6

    Article  PubMed  PubMed Central  Google Scholar 

  41. Jones, P.A., Functions of DNA methylation: islands, start sites, gene bodies and beyond, Nat. Rev. Genet., 2012, vol. 13, no. 7, pp. 484–492. https://doi.org/10.1038/nrg3230

    Article  CAS  PubMed  Google Scholar 

  42. Smith, Z.D. and Meissner, A., DNA methylation: roles in mammalian development, Nat. Rev. Genet., 2013, vol. 14, no. 3, pp. 204–220. https://doi.org/10.1038/nrg3354

    Article  CAS  PubMed  Google Scholar 

  43. Jung, S.E., Shin, K.J., and Lee, H.Y., DNA methylation-based age prediction from various tissues and body fluids, BMB Rep., 2017, vol. 50, no. 11, pp. 546–553. https://doi.org/10.5483/BMBRep.2017.50.11.175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Park, S.K. and Prolla, T.A., Lessons learned from gene expression profile studies of aging and caloric restriction, Ageing Res. Rev., 2005, vol. 4, no. 1, pp. 55–65. https://doi.org/10.1016/j.arr.2004.09.003

    Article  CAS  PubMed  Google Scholar 

  45. Fernandes, J., Arida, R.M., and Gomez-Pinilla, F., Physical exercise as an epigenetic modulator of brain plasticity and cognition, Neurosci. Biobehav. Rev., 2017, vol. 80, pp. 443–456. https://doi.org/10.1016/j.neubiorev.2017.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wilson, V.L., Smith, R.A., Mag, S., and Cutle, R.G., Genomic 5-methyldeoxycytidine decreases with age, J. Biol. Chem., 1987, vol. 262, no. 21, pp. 9948–9951.

    CAS  PubMed  Google Scholar 

  47. Rakyan, V.K., Down, T.A., Maslau, S., et al., Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains, Genome Res., 2010, vol. 20, no. 4, pp. 434–439. https://doi.org/10.1101/gr.103101.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dozmorov, M.G., Polycomb repressive complex 2 epigenomic signature defines age-associated hypermethylation and gene expression changes, Epigenetics, 2015, vol. 10, no. 6, pp. 484–495. https://doi.org/10.1080/15592294.2015.1040619

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mozhui, K. and Pandey, A.K., Conserved effect of aging on DNA methylation and association with EZH2 polycomb protein in mice and humans, Mech. Ageing Dev., 2017, vol. 162, pp. 27–37. https://doi.org/10.1016/j.mad.2017.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bocklandt, S., Lin, W., Sehl, M.E., et al., Epigenetic predictor of age, PLoS One, 2011, vol. 6, no. 6. e14821. https://doi.org/10.1371/journal.pone.0014821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Koch, C.M. and Wagner, W., Epigenetic-aging-signature to determine age in different tissues, Aging (Albany New York), 2011, vol. 3, no. 10, pp. 1018–1027. https://doi.org/10.18632/aging.100395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Weidner, C.I., Lin, Q., Koch, C.M., et al., Aging of blood can be tracked by DNA methylation changes at just three CpG sites, Genome Biol., 2014, vol. 15, no. 2, p. R24. https://doi.org/10.1186/gb-2014-15-2-r24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yi, S.H., Xu, L.C., Mei, K., et al., Isolation and identification of age-related DNA methylation markers for forensic age-prediction, Forensic Sci. Int. Genet., 2014, vol. 11, pp. 117–125. https://doi.org/10.1016/j.fsigen.2014.03.006

    Article  CAS  PubMed  Google Scholar 

  54. Zbiec-Piekarska, R., Spolnicka, M., Kupiec, T., et al., Examination of DNA methylation status of the ELOVL2 marker may be useful for human age prediction in forensic science, Forensic Sci. Int. Genet., 2015, vol. 14, pp. 161–167. https://doi.org/10.1016/j.fsigen.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  55. Zbiec-Piekarska, R., Spolnicka, M., Kupiec, T., et al., Development of a forensically useful age prediction method based on DNA methylation analysis, Forensic Sci. Int. Genet., 2015, vol. 17, pp. 173–179. https://doi.org/10.1016/j.fsigen.2015.05.001

    Article  CAS  PubMed  Google Scholar 

  56. Bekaert, B., Kamalandua, A., Zapico, S.C., et al., Improved age determination of blood and teeth samples using a selected set of DNA methylation markers, Epigenetics, 2015, vol. 10, no. 10, pp. 922–930. https://doi.org/10.1080/15592294.2015.1080413

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bekaert, B., Kamalandua, A., Zapico, S.C., et al., A selective set of DNA-methylation markers for age determination of blood, teeth and buccal samples, Forensic Sci. Int. Genet., Suppl. Ser., 2015, vol. 5, pp. e144–e145. https://doi.org/10.1016/j.fsigss.2015.09.058

    Article  Google Scholar 

  58. Park, J.L., Kim, J.H., Seo, E., et al., Identification and evaluation of age-correlated DNA methylation markers for forensic use, Forensic Sci. Int. Genet., 2016, vol. 23, pp. 64–70. https://doi.org/10.1016/j.fsigen.2016.03.005

    Article  CAS  PubMed  Google Scholar 

  59. Huang, Y., Yan, J., Hou, J., et al., Developing a DNA methylation assay for human age prediction in blood and bloodstain, Forensic Sci. Int. Genet., 2015, vol. 17, pp. 129–136. https://doi.org/10.1016/j.fsigen.2015.05.007

    Article  CAS  PubMed  Google Scholar 

  60. Xu, C., Qu, H., Wang, G., et al., A novel strategy for forensic age prediction by DNA methylation and support vector regression model, Sci. Rep., 2015, vol. 5, p. 17788. https://doi.org/10.1038/srep17788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Freire-Aradas, A., Phillips, C., Mosquera-Miguel, A., et al., Development of a methylation marker set for forensic age estimation using analysis of public methylation data and the Agena Bioscience EpiTYPER system, Forensic Sci. Int. Genet., 2016, vol. 24, pp. 65–74. https://doi.org/10.1016/j.fsigen.2016.06.005

    Article  CAS  PubMed  Google Scholar 

  62. Florath, I., Butterbach, K., Mulle, H., et al., Cross-sectional and longitudinal changes in DNA methylation with age: an epigenome-wide analysis revealing over 60 novel age-associated CpG sites, Hum. Mol. Genet., 2014, vol. 23, no. 5, pp. 1186–1201. https://doi.org/10.1093/hmg/ddt531

    Article  CAS  PubMed  Google Scholar 

  63. Hamano, Y., Manabe, S., Morimoto, C., et al., Forensic age prediction for dead or living samples by use of methylation-sensitive high resolution melting, Leg. Med. (Tokyo), 2016, vol. 21, pp. 5–10. https://doi.org/10.1016/j.legalmed.2016.05.001

    Article  CAS  Google Scholar 

  64. Hamano, Y., Manabe, S., Morimoto, C., et al., Forensic age prediction for saliva samples using methylation-sensitive high resolution melting: exploratory application for cigarette butts, Sci. Rep., 2017, vol. 7, no. 1, p. 10444. https://doi.org/10.1038/s41598-017-10752-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vidal-Bralo, L., Lopez-Golan, Y., and Gonzalez, A., Simplified assay for epigenetic age estimation in whole blood of adults, Front. Genet., 2016, vol. 7, p. 126. https://doi.org/10.3389/fgene.2016.00126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Naue, J., Hoefsloot, H.C.J., Mook, O.R.F., et al., Chronological age prediction based on DNA methylation: massive parallel sequencing and random forest regression, Forensic Sci. Int.: Suppl. Genet., 2017, vol. 31, pp. 19–28. https://doi.org/10.1016/j.fsigen.2017.07.015

    Article  CAS  Google Scholar 

  67. Wang, M. and Lemos, B., Ribosomal DNA harbors an evolutionarily conserved clock of biological aging, Genome Res., 2019, vol. 29, no. 3, pp. 325–333. https://doi.org/10.1101/gr.241745.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Buchwalter, A. and Hetzer, M.W., Nucleolar expansion and elevated protein translation in premature aging, Nat. Commun., 2017, vol. 8, p. 328. https://doi.org/10.1038/s41467-017-00322-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Stubbs, T.M., Bonder, M.J., Stark, A.K., et al., Multi-tissue DNA methylation age predictor in mouse, Genome Biol., 2017, vol. 18, no. 1, p. 68. https://doi.org/10.1186/s13059-017-1203-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by scientific and technical program of the Union State “Development of Innovative Genogeographic and Genomic Technologies of Personal Identification and Human Individual Peculiarities Based on Studying Gene Pools of the Union State Regions” (“DNA Identification”) (state contract no. 011-17 from September 26, 2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Bruskin.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Barkhash

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zolotarenko, A.D., Chekalin, E.V. & Bruskin, S.A. Modern Molecular Genetic Methods for Age Estimation in Forensics. Russ J Genet 55, 1460–1471 (2019). https://doi.org/10.1134/S1022795419120147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795419120147

Keywords:

Navigation