Skip to main content
Log in

The Role of Whole-Genome Studies in the Investigation of Honey Bee Biology

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Given is an overview of original publications devoted to the investigation of the honey bee genome. The history of honey bee genome studies and its characteristics are described. The results of genetic studies of honey bees using genome-wide data are presented. A special focus is put on the search for alleles associated with economically valuable, adaptive, and other important honey bee traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Whitfield, C.W., Behura, S.K., Berlocher, S.H., et al., Thrice out of Africa: ancient and recent expansions of the honey bee, Apis mellifera, Science, 2006, vol. 314, no. 5799, pp. 642—645. https://doi.org/10.1126/science.1132772

    Article  CAS  PubMed  Google Scholar 

  2. Honeybee Genome Sequencing Consortium, Insights into social insects from the genome of the honeybee Apis mellifera, Nature, 2006, vol. 443, no. 7114, pp. 931—949. https://doi.org/10.1038/nature05260

  3. Wallberg, A., Han, F., Wellhagen, G., et al., A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera, Nat. Genet., 2014., V. 46, no. 10, pp. 1081—1088. https://doi.org/10.1038/ng.3077

    Article  CAS  PubMed  Google Scholar 

  4. Cridland, J.M., Tsutsui, N.D., and Ramírez, S.R., The complex demographic history and evolutionary origin of the western honey bee, Apis mellifera, Genome Biol. EV, 2017, vol. 9, no. 2, pp. 457—472. https://doi.org/10.1093/gbe/evx009

    Article  Google Scholar 

  5. Wallberg, A., Bunikis, I., Pettersson, O.V., and Mosbech, M.B., A hybrid de novo genome assembly of the honeybee, Apis mellifera, with chromosome-length scaffolds. http://dx.doi.org/10.1101/361469

  6. Park, D., Jung, J.W., Choi, B.-S., et al., Uncovering the novel characteristics of Asian honey bee, Apis cerana, by whole genome sequencing, BMC Genomics, 2015, vol. 16, p. 1. https://doi.org/10.1186/1471-2164-16-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Takahashi, J.-I., Deowanish, S., and Okuyama, H., Analysis of the complete mitochondrial genome of the giant honeybee, Apis dorsata (Hymenoptera: Apidae) in Thailand, Conserv. Genet. Resour., 2017. https://doi.org/10.1007/s12686-017-0942-7

  8. Woodard, S.H., Fischman, B.J., Venkat, A., et al., Genes involved in convergent evolution of eusociality in bees, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, no. 18, pp. 7472—7477. https://doi.org/10.1073/pnas.1103457108

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang, A.R., Kim, M.J., Park, J.S., et al., Complete mitochondrial genome of the dwarf honeybee, Apis florea (Hymenoptera: Apidae), Mitochondrial DNA, 2013, vol. 24, no. 3, pp. 208—210. https://doi.org/10.3109/19401736.2012.744986

    Article  CAS  PubMed  Google Scholar 

  10. Elsik, C.G., Worley, K.C., Bennett, A.K., et al., Finding the missing honey bee genes: lessons learned from a genome upgrade, BMC Genomics, 2014, vol. 15, p. 86. https://doi.org/10.1186/1471-2164-15-86

    Article  PubMed  PubMed Central  Google Scholar 

  11. Beye, M., Gattermeier, I., Hasselmann, M., et al., Exceptionally high levels of recombination across the honey bee genome, Genome Res., 2006, vol. 16, no. 11, pp. 1339—1344. https://doi.org/10.1101/gr.5680406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wallberg, A., Glémin, S., and Webster, M.T., Extreme recombination frequencies shape genome variation and evolution in the honeybee, Apis mellifera, PLoS Genet., 2015, vol. 11, no. 4. e1005189. https://doi.org/10.1371/journal.pgen.1005189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu, H., Zhang, X., Huang, J., et al., Causes and consequences of crossing-over evidenced via a high-resolution recombinational landscape of the honey bee, Genome Biol., 2015, vol. 16, p. 15. https://doi.org/10.1186/s13059-014-0566-0

    Article  CAS  Google Scholar 

  14. Duret, L. and Galtier, N., Biased gene conversion and the evolution of mammalian genomic landscapes, Annu. Rev. Genomics Hum. Genet., 2009, vol. 10, pp. 285—311.https://doi.org/10.1146/annurev-genom-082908-150001

    Article  CAS  PubMed  Google Scholar 

  15. Nelson, C.M., Ihle, K.E., Fondrk, M.K., et al., The gene vitellogenin has multiple coordinating effects on social organization, PLoS Biol., 2007, vol. 5, no. 3. e62. https://doi.org/10.1371/journal.pbio.0050062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wu, Y.Q., Zheng, H.Q., Corona, M., et al., Comparative transcriptome analysis on the synthesis pathway of honey bee (Apis mellifera) mandibular gland secretions, Sci. Rep., 2017, no. 7(4530). https://doi.org/10.1038/s41598-017-04879-z

  17. Crozier, R.H. and Crozier, Y.C., The mitochondrial genome of the honeybee Apis mellifera: complete sequence and genome organization, Genetics, 1993, vol. 133, no. 1, pp. 97—117.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Crozier, R.H., Crozier, Y.C., and Mackinlay, A.G., The CO-I and CO-II region of honeybee mitochondrial DNA: evidence for variation in insect mitochondrial evolutionary rates, Mol. Biol. EV, 1989, vol. 6, no. 4, pp. 399—411. https://doi.org/10.1093/oxfordjournals.molbev.a040553

    Article  CAS  Google Scholar 

  19. Bigot, Y., Lutcher, F., Hamelin, M.H., and Periquet, G., The 28S ribosomal RNA-encoding gene of Hymenoptera: inserted sequences in the retrotransposon-rich regions, Gene, 1992, vol. 121, no. 2, pp. 347—352. https://doi.org/10.1016/0378-1119(92)90142-C

    Article  CAS  PubMed  Google Scholar 

  20. Estoup, A., Solignac, M., Harry, M., and Cornuet, J.M., Characterization of (GT)n and (CT)n microsatellites in two insect species: Apis mellifera and Bombus terrestris, Nucleic Acids Res., 1993, vol. 21, no. 6, pp. 1427—1431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Estoup, A., Garnery, L., Solignac, M., and Cornuet, J.M., Microsatellite variation in honey bee (Apis mellifera L.) populations: hierarchical genetic structure and test of the infinite allele and stepwise mutation models, Genetics, 1995, vol. 140, no. 2, pp. 679—695.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Schmitzova, J., Klaudiny, J., Albert, S., et al., A family of major royal jelly proteins of the honeybee Apis mellifera L., Cell. Mol. Life Sci., 1998, vol. 54, no. 9, pp. 1020—1030. https://doi.org/10.1007/s000180050229

    Article  CAS  PubMed  Google Scholar 

  23. Wilanowski, T.M. and Gibson, J.B., sn-Glycerol-3-phosphate dehydrogenase in the honey bee Apis mellifera—an unusual phenotype associated with the loss of introns1GenBank accession No.: AF023666.12 Nucleotide symbol combinations: H = A/C/T; N = any nucleotide; R = A/G; Y = C/T.2, Gene, 1998, vol. 209, no. 1, pp. 71—76. https://doi.org/10.1016/S0378-1119(98)00016-X

    Article  CAS  PubMed  Google Scholar 

  24. Walldorf, U., Binner, P., and Fleig, R., Hox genes in the honey bee Apis mellifera, Dev. Genes EV, 2000, vol. 210, no. 10, pp. 483—492. https://doi.org/10.1007/s004270050337

    Article  CAS  Google Scholar 

  25. Chen, C., Liu, Z., Pan, Q., et al., Genomic analyses reveal demographic history and temperate adaptation of the newly discovered honey bee subspecies Apis mellifera sinisxinyuan n. ssp., Mol. Biol. EV, 2016, vol. 33, no. 5, pp. 1337—1348. https://doi.org/10.1093/molbev/msw017

    Article  CAS  Google Scholar 

  26. Wragg, D., Techer, M.A., Canale-Tabet, K., et al., Autosomal and mitochondrial adaptation following Admixture: a case study on the honeybees of reunion island, Genome Biol. EV, 2018, vol. 10, no. 1, pp. 220—238. https://doi.org/10.1093/gbe/evx247

    Article  CAS  Google Scholar 

  27. Haddad, N.J., Loucif-Ayad, W., Adjlane, N., et al., Draft genome sequence of the Algerian bee Apis mellifera intermissa, Genome Data, 2015, vol. 4, pp. 24—25. https://doi.org/10.1016/j.gdata.2015.01.011

    Article  Google Scholar 

  28. Elsik, C.G., Tayal, A., Diesh, C.M., et al., Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine, Nucleic Acids Res., 2016, vol. 44, no. D1, pp. D793—D800. https://doi.org/10.1093/nar/gkv1208

    Article  CAS  PubMed  Google Scholar 

  29. Wallberg, A., Schöning, C., Webster, M.T., and Hasselmann, M., Two extended haplotype blocks are associated with adaptation to high altitude habitats in East African honey bees, PLoS Genet., 2017, vol. 13, no. 5. e1006792. https://doi.org/10.1371/journal.pgen.1006792

  30. Spötter, A., Gupta, P., Mayer, M., et al., Genome-Wide association study of a varroa-specific defense behavior in honeybees (Apis mellifera), J. Hered., 2016, vol. 107, no. 3, pp. 220—227. https://doi.org/10.1093/jhered/esw005

    Article  PubMed  PubMed Central  Google Scholar 

  31. Henriques, D., Parejo, M., Vignal, A., et al., Developing reduced SNP assays from whole-genome sequence data to estimate introgression in an organism with complex genetic patterns, the Iberian honeybee (Apis mellifera iberiensis), Evol. Appl., 2018, no. 11, pp. 1270—1282. https://doi.org/10.1111/eva.12623

  32. Han, F., Wallberg, A., and Webster, M.T., From where did the Western honeybee (Apis mellifera) originate?, Ecol. Evol., 2012, vol. 2, no. 8, pp. 1949—1957. https://doi.org/10.1002/ece3.312

    Article  PubMed  PubMed Central  Google Scholar 

  33. Han, F., Wallberg, A., and Webster, M.T., Population genomics of the honey bee reveals strong signatures of positive selection on worker traits, Proc. Natl. Acad. Sci. U.S.A., 2014, vol. 111, no. 7, pp. 2614—2619. https://doi.org/10.1073/pnas.1315506111

    Article  CAS  Google Scholar 

  34. Kapheim, K.M., Pan, H., Li, C., et al., Genomic signatures of evolutionary transitions from solitary to group living, Science, 2015, vol. 348, no. 6239, pp. 1139—1143. https://doi.org/10.1126/science.aaa4788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kent, C.F., Minaei, S., Harpur, B.A., and Zayed, A., Recombination is associated with the evolution of genome structure and worker behavior in honey bees, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 44, pp. 18012—18017. https://doi.org/10.1073/pnas.1208094109

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pinto, M.A., Henriques, D., Chávez-Galarza, J., et al., Genetic integrity of the Dark European honey bee (Apis mellifera mellifera) from protected populations: a genome-wide assessment using SNPs and mtDNA sequence data, J. Apic. Res., 2014, vol. 53, no. 2, pp. 269—278. https://doi.org/10.3896/IBRA.1.53.2.08

    Article  Google Scholar 

  37. Jensen, A.B., Palmer, K.A., Boomsma, J.J., and Pedersen, B.V., Varying degrees of Apis mellifera ligustica introgression in protected populations of the black honeybee, Apis mellifera mellifera, in northwest Europe, Mol. Ecol., 2005, vol. 14, pp. 93—106.

    Article  PubMed  Google Scholar 

  38. Muñoz, I., Henriques, D., Johnston, J.S., et al., Reduced SNP panels for genetic identification and introgression analysis in the dark honey bee (Apis mellifera mellifera), PLoS One, 2015, vol. 10, no. 4. e0124365. https://doi.org/10.1371/journal.pone.0124365

  39. Parejo, M., Wragg, D., Gauthier, L., et al., Using whole-genome sequence information to foster conservation efforts for the European dark honey bee, Apis mellifera mellifera, Front. Ecol. Evol., 2016, vol. 4, p. 583. https://doi.org/10.3389/fevo.2016.00140

    Article  Google Scholar 

  40. Chávez-Galarza, J., Henriques, D., Johnston, J.S., et al., Signatures of selection in the Iberian honey bee (Apis mellifera iberiensis) revealed by a genome scan analysis of single nucleotide polymorphisms, Mol. Ecol., 2013, vol. 22, no. 23, pp. 5890—5907. https://doi.org/10.1111/mec.12537

    Article  CAS  PubMed  Google Scholar 

  41. Chapman, N.C., Harpur, B.A., Lim, J., et al., A SNP test to identify Africanized honeybees via proportion of “African” ancestry, Mol. Ecol. Resour., 2015, vol. 15, no. 6, pp. 1346—1355. https://doi.org/10.1111/1755-0998.12411

    Article  CAS  PubMed  Google Scholar 

  42. Kadri, S.M., Harpur, B.A., Orsi, R.O., and Zayed, A., A variant reference data set for the Africanized honeybee, Apis mellifera, Sci. Data, 2016, vol. 3, p. 160097. https://doi.org/10.1038/sdata.2016.97

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chapman, N.C., Harpur, B.A., Lim, J., et al., Hybrid origins of Australian honeybees (Apis mellifera), Apidologie, 2016, vol. 47, no. 1, pp. 26—34. https://doi.org/10.1007/s13592-015-0371-0

    Article  Google Scholar 

  44. Harpur, B.A., Chapman, N.C., Krimus, L., et al., Assessing patterns of admixture and ancestry in Canadian honey bees, Insectes Soc., 2015, vol. 62, no. 4, pp. 479—489. https://doi.org/10.1007/s00040-015-0427-1

    Article  Google Scholar 

  45. Falush, D., Stephens, M., and Pritchard, J.K., Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies, Genetics, 2003, vol. 164, no. 4, pp. 1567—1587.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Alexander, D.H., Novembre, J., and Lange, K., Fast model-based estimation of ancestry in unrelated individuals, Genome Res., 2009, vol. 19, no. 9, pp. 1655—1664. https://doi.org/10.1101/gr.094052.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Weir, B.S. and Cockerham, C.C., Estimating F-statistics for the analysis of population structure, Evolution, 1984, vol. 38, no. 6, pp. 1358—1370. https://doi.org/10.2307/2408641

    Article  CAS  PubMed  Google Scholar 

  48. Graham, A.M., Munday, M.D., Kaftanoglu, O., et al., Support for the reproductive ground plan hypothesis of social evolution and major QTL for ovary traits of Africanized worker honey bees (Apis mellifera L.), BMC Evol. Biol., 2011, vol. 11, p. 95. https://doi.org/10.1186/1471-2148-11-95

    Article  PubMed  PubMed Central  Google Scholar 

  49. Rueppell, O., Metheny, J.D., Linksvayer, T., et al., Genetic architecture of ovary size and asymmetry in European honeybee workers, Heredity, 2011, vol. 106, no. 5, pp. 894—903. https://doi.org/10.1038/hdy.2010.138

    Article  CAS  PubMed  Google Scholar 

  50. Holloway, B., Sylvester, H.A., Bourgeois, L., and Rinderer, T.E., Association of single nucleotide polymorphisms to resistance to chalkbrood in Apis mellifera, J. Apic. Res., 2012, vol. 51, no. 2, pp. 154—163. https://doi.org/10.3896/IBRA.1.51.2.02

    Article  CAS  Google Scholar 

  51. Tsuruda, J.M., Harris, J.W., Bourgeois, L., et al., High-resolution linkage analyses to identify genes that influence Varroa sensitive hygiene behavior in honey bees, PLoS One, 2012, vol. 7, no. 11. e48276. https://doi.org/10.1371/journal.pone.0048276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hunt, G.J., Page, R.E., Jr., Fondrk, M.K., and Dullum, C.J., Major quantitative trait loci affecting honey bee foraging behavior, Genetics, 1995, vol. 141, no. 4, pp. 1537—1545.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Rüppell, O., Pankiw, T., and Page, R.E., Jr., Pleiotropy, epistasis and new QTL: the genetic architecture of honey bee foraging behavior, J. Hered., 2004, vol. 95, no. 6, pp. 481—491. https://doi.org/10.1093/jhered/esh072

    Article  PubMed  Google Scholar 

  54. Lapidge, K.L., Oldroyd, B.P., and Spivak, M., Seven suggestive quantitative trait loci influence hygienic behavior of honey bees, Naturwissenschaften, 2002, vol. 89, no. 12, pp. 565—568. https://doi.org/10.1007/s00114-002-0371-6

    Article  CAS  PubMed  Google Scholar 

  55. Shorter, J.R., Arechavaleta-Velasco, M., Robles-Rios, C., and Hunt, G.J., A genetic analysis of the stinging and guarding behaviors of the honey bee, Behav. Genet., 2012, vol. 42, no. 4, pp. 663—674. https://doi.org/10.1007/s10519-012-9530-5

    Article  PubMed  Google Scholar 

  56. Spötter, A., Gupta, P., Nürnberg, G., et al., Development of a 44K SNP assay focusing on the analysis of a varroa-specific defense behaviour in honey bees (Apis mellifera carnica), Mol. Ecol. Resour., 2012, vol. 12, no. 2, pp. 323—332. https://doi.org/10.1111/j.1755-0998.2011.03106.x

    Article  CAS  PubMed  Google Scholar 

  57. Liu, Y., Yan, L., Li, Z., et al., Larva-mediated chalkbrood resistance-associated single nucleotide polymorphism markers in the honey bee Apis mellifera, Insect Mol. Biol., 2016, vol. 25, no. 3, pp. 239—250. https://doi.org/10.1111/imb.12216

    Article  CAS  PubMed  Google Scholar 

  58. Southey, B.R., Zhu, P., Carr-Markell, M.K., et al., Characterization of genomic variants associated with scout and recruit behavioral castes in honey bees using whole-genome sequencing, PLoS One, 2016, vol. 11, no. 1. e0146430. https://doi.org/10.1371/journal.pone.0146430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wallberg, A., Pirk, C.W., Allsopp, M.H., and Webster, M.T., Identification of multiple loci associated with social parasitism in Honeybees, PLoS Genet., 2016, vol. 12, no. 6. e1006097. https://doi.org/10.1371/journal.pgen.1006097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lattorff, H.M.G., Moritz, R.F.A., Crewe, R.M., and Solignac, M., Control of reproductive dominance by the thelytoky gene in honeybees, Biol. Lett., 2007, vol. 3, no. 3, pp. 292—295. https://doi.org/10.1098/rsbl.2007.0083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fuller, Z.L., Niño, E.L., Patch, H.M., et al., Genome-wide analysis of signatures of selection in populations of African honey bees (Apis mellifera) using new web-based tools, BMC Genomics, 2015, vol. 16, p. 518. https://doi.org/10.1186/s12864-015-1712-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Henriques, D., Wallberg, A., Chávez-Galarza, J., et al., Whole genome SNP-associated signatures of local adaptation in honeybees of the Iberian Peninsula, Sci. Rep., 2018, vol. 8, no. 1, p. 11145. https://doi.org/10.1038/s41598-018-29469-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Luu, K., Bazin, E., and Blum, M.G.B., PCAdapt: an R package to perform genome scans for selection based on principal component analysis, Mol. Ecol. Resour., 2017, vol. 17, no. 1, pp. 67—77. https://doi.org/10.1111/1755-0998.12592

    Article  CAS  PubMed  Google Scholar 

  64. Stucki, S., Orozco-terWengel, P., Forester, B.R., et al., High performance computation of landscape genomic models including local indicators of spatial association, Mol. Ecol. Resour., 2017, vol. 17, no. 5, pp. 1072—1089. https://doi.org/10.1111/1755-0998.12629

    Article  CAS  PubMed  Google Scholar 

  65. Frichot, E., Schoville, S.D., Bouchard, G., and François, O., Testing for associations between loci and environmental gradients using latent factor mixed models, Mol. Biol. Evol., 2013, vol. 30, no. 7, pp. 1687—1699. https://doi.org/10.1093/molbev/mst063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

We are grateful to the anonymous reviewer for comments and valuable recommendations. Work of the 2nd and 5th authors was financially supported by the Russian Foundation for Basic Research and the Academy of Sciences of the Republic of Bashkortostan (project no. 17-44-020648); work of the 4th and 6th authors, by the State Assignment (no. AAAA-A16-116020350026-0); and work of the 1st and 3rd authors, by the postdoctoral fellowships of Incheon National University, Incheon, South Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Kaskinova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors. 

Additional information

Translated by N. Maleeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yunusbaev, U.B., Kaskinova, M.D., Ilyasov, R.A. et al. The Role of Whole-Genome Studies in the Investigation of Honey Bee Biology. Russ J Genet 55, 815–824 (2019). https://doi.org/10.1134/S102279541906019X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279541906019X

Keywords:

Navigation