Skip to main content
Log in

Molecular-Genetic Mechanisms of Caries Development

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

This review analyzes the literature in the rapidly developing direction of genetic aspects of caries. The search by key words “genetic markers of caries” in the PubMed database was performed. Afterwards, an analysis of the literature lists of found publications was completed and additional sources were studied. Search by “caries” on the platform of elibrary.ru was performed. From the published data, the role of markers by spectrum of genes in caries development is obvious; however, the development of caries is influenced not only by genetic factors but also by environmental factors. The established molecular-genetic markers of caries development, including genes connected with immunity, saliva content, and rate of saliva formation and also connected with formation of teeth, dentin, and tooth enamel are considered. Social demographic factors and environmental factors (dietary peculiarities, hygiene of mouth cavity, contamination of environment, content of mouth microbiota) influencing caries development are considered. Information from literature sources will help to characterize the modern understanding of caries development and will also make it possible to perform both individual and population screening aiming to develop novel methods of caries prevention taking into account the detected markers of caries, establish groups of risk, and apply a personalized approach in the treatment of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Featherstone, J., The continuum of dental caries–evidence for a dynamic disease process, J. Dent. Res., 2004, vol. 83, spec. issue, pp. 39–42.

    Article  Google Scholar 

  2. Bretz, W.A., Corby, P.M., Melo, M.R., et al., Heritability estimates for dental caries and sucrose sweetness preference, Arch. Oral. Biol., 2006, vol. 51, pp. 1156–1160.

    Article  PubMed  Google Scholar 

  3. Wang, X., Shaffer, J.R., Weyant, R.J., et al., Genes and their effects on dental caries may differ between primary and permanent dentitions, Caries Res., 2010, vol. 44, pp. 277–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Abbasoğlu, Z., Tanboğa, İ., Küchler, E.C., et al., Early childhood caries is associated with genetic variants in enamel formation and immune response genes, Caries Res., 2015, vol. 49, no. 1, pp. 70–77. doi 10.1159/000362825

    Article  PubMed  Google Scholar 

  5. Shaffer, J.R., Polk, D.E., Feingold, E., et al., Demographic, socioeconomic, and behavioral factors affecting patterns of tooth decay in the permanent dentition: principal components and factor analyses, Dent. Oral Epidemiol., 2013, vol. 41, no. 4, pp. 364–373. doi 10.1111/cdoe.12016

    Article  Google Scholar 

  6. Anitha, C., Konde, S., Raj, N.S., et al., Dermatoglyphics: a genetic marker of early childhood caries, J. Indian Soc. Pedod. Prev. Dent., 2014, vol. 32, no. 3, pp. 220–224. doi 10.4103/0970-4388.135828

    Article  CAS  PubMed  Google Scholar 

  7. Shaffer, J.R., Wang, X., McNeil, D.W., et al., Genetic susceptibility to dental caries differs between the sexes: a family-based study, Caries Res., 2015, vol. 49, pp. 133–140. doi 10.1159/000369103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Levy, S.M., Warren, J.J., Broffitt, B., et al., Fluoride, beverages and dental caries in the primary dentition, Caries Res., 2003, vol. 37, pp. 157–165.

    Article  CAS  PubMed  Google Scholar 

  9. Ferreira, S.H., Beria, J.U., Kramer, P.F., et al., Dental caries in 0-to 5-year-old Brazilian children: prevalence, severity, and associated factors, Int. J. Paediatr. Dent., 2007, vol. 17, pp. 289–296.

    Article  PubMed  Google Scholar 

  10. Menghini, G., Steiner, M., Imfeld, T., et al., Early childhood caries–facts and prevention, Ther. Umsch., 2008, vol. 65, pp. 75–82.

    Article  PubMed  Google Scholar 

  11. Wendell, S., Wang, X., Brown, M., et al., Taste genes associated with dental caries, J. Dent. Res., 2010, vol. 89, no. 11, pp. 1198–1202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chuikin, S.V., Egorova, E.G., Akat’eva, G.G., and Aver’yanov, S.V., Prophylactics of dental caries among children in a large industrial city, Stomatol. Det. Vozrasta Profil., 2011, no. 3, pp. 41–45.

    Google Scholar 

  13. Geller, F., Feenstral, B., Zhang, H., et al., Genomewide association study identifies four loci associated with eruption of permanent teeth, PLoS Genet., 2011, vol. 7, no. 9, pp. 1–9. e1002275. http://www.plosgenetics. org.

    Article  Google Scholar 

  14. Shaffer, J.R., Wang, X., Feingold, E., et al., Genomewide association scan for childhood caries implicates novel genes, J. Dent. Res., 2011, vol. 90, pp. 1457–1462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shaffer, J.R., Feingold, E., Wang, X., et al., GWAS of dental caries patterns in the permanent dentition, J. Dent. Res., 2013, vol. 92, no. 1, pp. 38–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, X., Shaffer, J.R., Zeng, Z., et al., Genome-wide association scan of dental caries in the permanent dentition, BMC Oral Health, 2012, vol. 12, p. 57. doi 10.1186/1472-6831-12-57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stanley, B.O.C., Feingold, E., Cooper, M., et al., Genetic association of MPPED2 and ACTN2 with dental caries, J. Dent. Res., 2014, vol. 93, no. 7, pp. 626–632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shaffer, J.R., Carlson, J.C., Stanley, B.O.C., et al., Effects of enamel matrix genes on dental caries are moderated by fluoride exposures, Hum. Genet., 2015, vol. 134, no. 2, pp. 159–167. doi 10.1007/s00439-014-1504-7

    Article  CAS  PubMed  Google Scholar 

  19. Vieira, A.R., Modesto, A., and Marazita, M.L., Caries: review of human genetic research, Caries Res., 2014, vol. 48, pp. 491–506. doi 10.1159/000358333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Küchler, E.C., Deeley, K., Ho, B., et al., Genetic mapping of high caries experience on human chromosome 13, BMC Med. Genet., 2013, vol. 14, p. 116. http://www.biomedcentral.com/1471-2350/14/116P/1-10.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Küchler, E.C., Feng, P., Deeley, K., et al., Fine mapping of locus Xq25.1-27-2 for a low caries experience phenotype, Arch. Oral. Biol., 2014, vol. 59, no. 5, pp. 479–486. doi 10.1016/j.archoralbio.2014.02.009

    Article  PubMed  PubMed Central  Google Scholar 

  22. Briseño-Ruiz, J., Shimizu, T., Deeley, K., et al., Role of TRAV locus in low caries experience, Hum. Genet., 2013, vol. 132, no. 9, pp. 1015–1025. doi 10.1007/s00439-013-1313-4

    Article  PubMed  PubMed Central  Google Scholar 

  23. Eckert, S., Feingold, E., Cooper, M., et al., Variants on chromosome 4q21 near PKD2 and SIBLINGs are associated with dental caries, J. Hum. Genet., 2017, vol. 62, pp. 491–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zeng, Zh., Feingold, E., Wang, X., et al., Genomewide association study of primary dentition pit-and-fissure and smooth surface caries, Caries Res., 2014, vol. 48, no. 4, pp. 330–338. doi 10.1159/000356299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shaffer, J.R., Feingold, E., Wang, X., et al., Clustering tooth surfaces into biologically informative caries outcomes, J. Dent. Res., 2013, vol. 92, pp. 32–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, Q., Jia, P., Cuenco, K.T., et al., Multi-dimensional prioritization of dental caries candidate genes and its enriched dense network modules, PLoS One, 2013, vol. 8, no. 10, pp. 1–10. e76666. http://www. plosone.org.

    Google Scholar 

  27. Werneck, R.I., Mira, M.T., and Trevilatto, P.C., A critical review: an overview of genetic influence on dental caries, Oral. Dis., 2010, vol. 16, no. 7, pp. 613–623. doi 10.1111/j.1601-0825.2010.01675.x

    Article  CAS  PubMed  Google Scholar 

  28. Opal, S., Garg, S., Jain, J., and Walia, I., Genetic factors affecting dental caries risk, Austral. Dent. J., 2015, vol. 60, pp. 2–11. doi 10.1111/adj.12262

    Article  CAS  Google Scholar 

  29. Tao, R., Jurevic, R.J., Coulton, K.K., et al., Salivary antimicrobial peptide expression and dental caries experience in children, Antimicrob. Agents Chemother., 2005, vol. 49, no. 9, pp. 3883–3888. doi 10.1128/AAC.49.9.3883–3888.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stookey, G.K., The effect of saliva on dental caries, J. Am. Dent. Assoc., 2008, vol. 139, suppl., pp.11S–17S.

    Article  PubMed  Google Scholar 

  31. Animireddy, D., Bekkem, V.T.R., Vallala, P., et al., Evaluation of pH, buffering capacity, viscosity and flow rate levels of saliva in caries-free, minimal caries and nursing caries children: an in vivo study, Contemp. Clin. Dent., 2014, vol. 5, no. 3, pp. 324–328. doi 10.4103/0976-237X.137931

    Article  PubMed  PubMed Central  Google Scholar 

  32. Smith, J.K., Siddiqui, A.A., Modica, L.A., et al., Interferon-alpha upregulates gene expression of aquaporin-5 in human parotid glands, J. Interferon Cytokine Res., 1999, vol. 19, pp. 929–935.

    Article  CAS  PubMed  Google Scholar 

  33. Culp, D.J., Quivey, R.Q., Bowen, W.H., et al., A mouse caries model and evaluation of aqp5−/−knockout mice, Caries Res., 2005, vol. 39, pp. 448–454.

    Article  CAS  PubMed  Google Scholar 

  34. Azevedo, L.F., Pecharki, G.D., Brancher, J.A., et al., Analysis of the association between lactotransferrin (LTF) gene polymorphism and dental caries, J. Appl. Oral Sci., 2010, vol. 18, pp. 166–170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brancher, J.A., Pecharki, G.D., Doetzer, A.D., et al., Analysis of polymorphisms in the lactotransferrin gene promoter and dental caries, Int. J. Dent., 2011. ID 571726. [PubMed: 22190933]

    Google Scholar 

  36. Kim, S.I., Yu, D.Y., Pak, K.W., et al., Structure of the human lactotransferrin gene and its chromosomal localization, Mol. Cells, 1998, vol. 8, no. 6, pp. 663–668.

    CAS  PubMed  Google Scholar 

  37. Doetzer, A.D., Brancher, J.A., Pecharki, G.D., et al., Lactotransferrin gene polymorphism associated with caries experience, Caries Res., 2015, vol. 49, pp. 370–377. doi 10.1159/000366211

    Article  CAS  PubMed  Google Scholar 

  38. Viejo-Díaz, M., Andrés, M.T., Fierro, J.F., et al., Modulation of in vitro fungicidal activity of human lactoferrin against Candida albicans by extracellular cation concentration and target cell metabolic activity, Antimicrob. Agents Chemother., 2004, vol. 48, pp. 1242–1248.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yang, X.Q., Zhang, Q., Lu, L.Y., et al., Genotypic distribution of Candida albicans in dental biofilm of Chinese children associated with severe early childhood caries, Arch. Oral Biol., 2012, vol. 57, pp. 1048–1053.

    Article  PubMed  Google Scholar 

  40. Klinke, T., Guggenheim, B., Klimm, W., et al., Dental caries in rats associated with Candida albicans, Caries Res., 2011, vol. 45, pp. 100–106.

    Article  CAS  PubMed  Google Scholar 

  41. Vieira, A.R., Deeley, K.B., Callahan, N.F., et al., Clinical study: detection of Streptococcus mutans genomic DNA in human DNA samples extracted from saliva and blood, ISRN Dent., 2011, vol. 2011, article ID 543561. doi 10.5402/2011/543561

  42. Tanner, A.C., Kressirer, C.A., Faller, L.L., et al., Understanding caries from the oral microbiome perspective, J. Calif. Dent. Assoc., 2016, vol. 44, no. 7, pp. 437–446.

    PubMed  Google Scholar 

  43. Peterson, S.N., Meissner, T., Su, A.I., et al., Functional expression of dental plaque microbiota, Front. Inflectional Cell. Microbiol., 2014, vol. 4, article 108, pp. 1–13. doi 10.3389/fcimb.2014.00108

    Google Scholar 

  44. Nasidze, I., Li, J., Schroeder, R., et al., High diversity of the saliva microbiome in Batwa Pygmies, PLoS One, 2011, vol. 6. e23352. doi 10.1371/journal.pone.0023352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ling, Z., Liu, X., Wang, Y., et al., Pyrosequencing analysis of the salivary microbiota of healthy Chinese children and adults, Microb. Ecol., 2013, vol. 65, pp. 487–495. doi 10.1007/s00248-012-0123-x

    Article  PubMed  Google Scholar 

  46. Cephas, K.D., Kim, J., Mathai, R.A., et al., Comparative analysis of salivary bacterial microbiome diversity in edentulous infants and their mothers or primary care givers using pyrosequencing, PLoS One, 2011, vol. 6. e23503. doi 10.1371/journal.pone.0023503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Luo, A.H., Yang, D.Q., Xin, B.C., et al., Microbial profiles in saliva from children with and without caries in mixed dentition, Oral Dis., 2012, vol. 18, pp. 595–601. doi 10.1111/j.1601-0825.2012.01915.x

    Article  CAS  PubMed  Google Scholar 

  48. Guzman-Armstrong, S., Rampant caries, J. Sch. Nurs., 2005, vol. 21, pp. 272–278.

    Article  PubMed  Google Scholar 

  49. Wang, X., Willing, M.C., Marazita, M.L., et al., Genetic and environmental factors associated with dental caries in children: the Iowa fluoride study, Caries Res., 2012, vol. 46, pp. 177–184. doi 10.1159/000337282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang, J., Kawasaki, K., Lee, M., et al., The dentin phosphoprotein repeat region and inherited defects of dentin, Mol. Genet. Genomic Med., 2016, vol. 4, no. 1, pp. 28–38.

    Article  CAS  PubMed  Google Scholar 

  51. Kim, J.W., Hu, J.C., and Lee, J.I., Mutational hot spot in the dspp gene causing dentinogenesis imperfecta type II, Hum. Genet., 2005, vol. 116, pp. 186–191.

    Article  CAS  PubMed  Google Scholar 

  52. Oliviera, F.V., Dionisio, Th.J., Neves, L.T., et al., Amelogenin gene influence on enamel defects of cleft lip and palate patients, Braz. Oral Res. (São Paulo), 2014, vol. 28, no. 1. http://dx.doi.org/. doi 10.1590/1807-3107BOR-2014.vol28.0035

    Google Scholar 

  53. Tannure, P.N., Kuchler, E.C., Lips, A., et al., Genetic variation in MMP20 contributes to higher caries experience, J. Dent., 2012, vol. 40, no. 5, pp. 381–386. doi 10.1016/j.jdent.2012.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cho, E.S., Kim, K.-J., Lee, K.-E., et al., Alteration of conserved alternative splicing in AMELX causes enamel defects, J. Dent. Res., 2014, vol. 93, no. 10, pp. 980–987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gibson, C.W., Regulation of amelogenin gene expression, Crit. Rev. Eukaryot Gene Expr., 1999, vol. 9, pp. 45–57.

    CAS  PubMed  Google Scholar 

  56. Kim, J.W., Simmer, J.P., Hu, Y.Y., et al., Amelogenin p.M1T and p.W4S mutations underlying hypoplastic X-linked amelogenesis imperfect, J. Dent. Res., 2004, vol. 83, pp. 378–383.

    Article  CAS  PubMed  Google Scholar 

  57. Kang, H.Y., Seymen, F., Lee, S.K., et al., Candidate gene strategy reveals ENAM mutations, J. Dent. Res., 2009, vol. 88, pp. 266–269.

    Article  CAS  PubMed  Google Scholar 

  58. Kim, J.W., Seymen, F., Lin, B.P., et al., ENAM mutations in autosomal-dominant amelogenesis imperfect, J. Dent. Res., 2005, vol. 84, pp. 278–282.

    Article  CAS  PubMed  Google Scholar 

  59. Hart, P.S., Hart, T.C., Michalec, M.D., et al., Mutation in kallikrein 4 causes autosomal recessive hypomaturation amelogenesis imperfect, J. Med. Genet., 2004, vol. 41, pp. 545–549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kim, J.W., Simmer, J.P., Hart, T.C., et al., MMP-20 mutation in autosomal recessive pigmented hypomaturation amelogenesis imperfect, J. Med. Genet., 2005, vol. 42, pp. 271–275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lu, Y., Papagerakis, P., Yamakoshi, Y., et al., Functions of klk4 and mmp-20 in dental enamel formation, Biol. Chem., 2008, vol. 389, pp. 695–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Riley, B.T., Ilyichova, O., Costa, M.G.S., et al., Direct and indirect mechanisms of KLK4 inhibition revealed by structure and dynamics. Sci. Rep., 2016, vol. 6. ID35385. doi 10.1038/srep35385

  63. Marques, P.I., Fonseca, F., Sousa, T., et al., Adaptive evolution favoring KLK4 down regulation in East Asians, Mol. Biol. Evol., 2016, vol. 33, no. 1, pp. 93–108. doi 10.1093/molbev/msv199

    Article  CAS  PubMed  Google Scholar 

  64. Shimizu, T., Ho, B., Deeley, K., et al., Enamel formation genes influence enamel microhardness before and after cariogenic challenge, PLoS One, 2012, vol. 7, no. 9, pp. 1–9. e45022. http://www.plosone.org.

    Google Scholar 

  65. Patir, A., Seymen, F., Yildirim, M., et al., Enamel formation genes are associated with high caries experience in Turkish children, Caries Res., 2008, vol. 42, pp. 394–400. doi 10.1159/000154785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Daubert, D.M., Kelley, J.L., Udod, Yu.G., et al., Human enamel thickness and ENAM polymorphism, Int. J. Oral Sci., 2016, vol. 8, pp. 93–97. doi 10.1038/ijos.2016.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Duverger, O., Ohara, T., Shaffer, J.R., et al., Hair keratin mutations in tooth enamel increase dental decay risk, J. Clin. Invest., 2014, vol. 124, no. 12, pp. 5219–5224. doi 10.1172/JCI78272

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wang, Sh.-K., Chan, H.-Ch., Rajderkar, S., et al., Enamel malformations associated with a defined DSPP mutation in two families, Eur. J. Oral Sci., 2011, vol. 119, suppl. 1, pp. 158–167. doi 10.1111/j.1600-0722.2011.00874.x

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gulenko, O.V., Nosenko, L.A., Veselovskaya, E.V., et al., Dermatoglyphic indices in patients with congenital defects of the dentoalveolar system, Kuban. Nauchn. Med. Vestn., 2013, no. 6, pp. 85–87.

    Google Scholar 

  70. Gulenko, O.V. and Udina, I.G., Genetic predisposition to dental caries in children with congenital central nervous system development, Sovremennaya nauka: aktual’nye problemy teorii i praktiki (Modern Science: Actual Problems of Theory and Practice), series Estestvennye i tekhnicheskie nauki (Natural and Technical Sciences), 2016, no. 8, pp. 78–83.

    Google Scholar 

  71. Gulenko, O.V., Volobuev, V.V., Verapatvelyan, A.F., et al., Comparative analysis of the dental caries incidence in children with neuropsychiatric disorders and congenital cleft lip and palate, living in Krasnodar, Kuban. Nauchn. Med. Vestn., 2017, no. 2, pp. 56–60.

    Article  Google Scholar 

  72. Werneck, R.I., Herenia, P., Lawrenc, H.P., et al., Early childhood caries and access to dental care among children of Portuguese-speaking immigrants in the city of Toronto, J. Canad. Dent. Assoc., 2008, vol. 74, no. 9, pp. 805–806. http://www.cda-adc.ca/jcda.

    Google Scholar 

  73. Sokol’skaya, O.Yu. and Bimbas, E.S., Study of cariogenic factors associated with oral hygiene in 3–10 years old children, Probl. Stomatol., 2013, no. 2, pp. 58–62.

    Google Scholar 

  74. Zykin, A.G., Optimization of methods of prevention of major dental diseases among children of primary school age and adolescents, Probl. Stomatol., 2014, no. 3, pp. 54–56.

    Google Scholar 

  75. Perdikogianni, H., Papaioannou, W., Nakou, M., et al., Periodontal and microbiological parameters in children and adolescents with cleft lip and/or palate, Int. J. Paediatr. Dent., 2009, vol. 19, pp. 455–467.

    Article  PubMed  Google Scholar 

  76. Vieira, A.R., Genetics and caries, Perspect. Braz. Oral Res., 2012, vol. 26, suppl. 1, pp. 7–9. (J. Public Health Dent., 2011, vol. 71, no. 4, pp. 289–300.) doi 10.1111/j.1752-7325.2011.00271.x

    Google Scholar 

  77. Chankanka, O., Cavanaugh, J.E., Levy, S.M., et al., Longitudinal associations between children’s dental caries and risk factors, BMC Oral Health, 2015, vol. 15. ID167. doi 10.1186/s12903-015-0143-2

  78. Fernando, S., Speicher, D.J., Bakr, M.M., et al., Protocol for assessing maternal, environmental and epigenetic risk factors for dental caries in children, BMC Oral Health., 2015, vol. 15, p. 167. doi 10.1186/sl2903-015-0143-2

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kornman, K.S. and Polverini, P.J., Clinical application of genetics to guide prevention and treatment of oral diseases, Clin. Genet., 2014, vol. 86, no. 1, pp. 44–49. doi 10.1111/cge.12396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Slayton, R.L., Cooper, M.E., and Marazita, M.L., Tuftelin, mutans streptococci, and dental caries susceptibility, J. Dent. Res., 2005, vol. 84, pp. 711–714.

    Article  CAS  PubMed  Google Scholar 

  81. Vecherkovskaya, M.F., Tets, G.V., and Tets, V.V., Modern ideas about the oral microbiota of healthy children, Stomatol. Det. Vozrasta Profil., 2016, vol. 57, no. 2, pp. 16–21.

    Google Scholar 

  82. Wang, Y., Xuel, J., Zhoul, X., et al., Oral microbiota distinguishes acute lymphoblastic leukemia pediatric hosts from healthy populations, PLoS One, 2014, vol. 9, no. 7, pp. 1–8. e102116. http://www.plosone.org.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Udina.

Additional information

Original Russian Text © I.G. Udina, O.V. Gulenko, 2018, published in Genetika, 2018, Vol. 54, No. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Udina, I.G., Gulenko, O.V. Molecular-Genetic Mechanisms of Caries Development. Russ J Genet 54, 415–422 (2018). https://doi.org/10.1134/S1022795418040154

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795418040154

Keywords

Navigation