Skip to main content
Log in

Comparative analysis of Agropyron intermedium (Host) Beauv 6Agi and 6Agi2 chromosomes in bread wheat cultivars and lines with wheat–wheatgrass substitutions

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

A comparative study of wheat–wheatgrass substituted cultivars and lines resistant to leaf rust developed by the Agricultural Research Institute for Southeast Regions (Multi 6R, Belyanka, Favorit, Voevoda, Lebedushka) and Samara Agricultural Research Institute (Tulaikovskaya 5, Tulaikovskaya 10, Tulaikovskaya 100, Tulaikovskaya Zolotistaya) breeding was conducted. A complex analysis using molecular cytogenetic (C-differential banding, fluorescent (FISH) and genomic (GISH) in situ hybridization), molecular (PLUG markers), and biochemical (electrophoretic analysis of gliadins) markers demonstrated that they have a substitition of wheat chromosome 6D by the chromosomes 6Agi and 6Agi2 belonging to the J(=E) Agropyron intermedium (Host) Beauv (=Thinopyrum intermedium (Host) Barkworth & D.R. Dewey) subgenome. In spite of the fact that the chromosomes 6Agi and 6Agi2 differ in the C-banding pattern and demonstrated minor differences in the blocks of gliadin components, they had the identical pattern of pSc119.2 and pAs1 probe distribution and conjugated between themselves with insignificant disturbance. Thus, it was demonstrated that 6Agi and 6Agi2 are homologous chromosomes; however, the question about allelism of their leaf rust resistance genes between themselves requires special studies. Nevertheless, using STS and SCAR markers and taking into account the type of reaction to Puccinia triticina, their non-allelism to the Lr9, Lr19, Lr24, Lr29, Lr38, and Lr47 genes was established. It was revealed that the 6Agi and 6Agi2 chromosomes have a different level of transmission in hybrid F2 populations depending on the hybrid combination gene background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pienaar, R.V., Wheat and Thinopyrum hybrids, Biotechnol. Agric. For., 1990, vol. 13, pp. 167–217.

    Google Scholar 

  2. Wang, R.R.C., Agropyron and Psathyrostachys, in Wild Crop Relatives: Genomic and Breeding Resources, Cereals, Heidelberg: Springer-Verlag, 2011, pp. 77–108.

    Chapter  Google Scholar 

  3. Chen, Q., Conner, R.L., Laroche, A., and Thomas, J.B., Genome analysis of Thinopyrum intermedium and Th. ponticum using genomic in situ hybridization, Genome, 1998, vol. 41, pp. 580–586. doi 10.1139/g98-055

    Article  CAS  PubMed  Google Scholar 

  4. Jauhar, P.P., Alien gene transfer and genetic enrichment of bread wheat, Biodiversity and Wheat Improvement, Damania, A.B., Ed., ICARDA, Wiley, 1993, pp. 103–120.

    Google Scholar 

  5. Tsitsin, N.V., Grain and fodder wheat–wheatgrass hybrids, in Gibridy otdalennykh skreshchivanii i poliploidy (Hybrids of Remote Crosses and Polyploids), Moscow: Akad. Nauk SSSR, 1964, pp. 31–36.

    Google Scholar 

  6. Sinigovets, M.E., Cytogenetic structure of the 56-chromosome wheat–wheatgrass hybrids (Triticum aestivum × Elytrigia intermedia), Genetika (Moscow), 1987, vol. 23, no. 5, pp. 854–862.

    Google Scholar 

  7. McIntosh, R.A., Yamazaki, Y., Dubcovsky, J., et al., Catalogue of Gene Symbols for Wheat (Proc. 12th Int. Wheat Genet. Symp.), Yokohama, 2013. http://www.shigen.nig.ac.jp/wheat/komugi/genes/download. jsp.

    Google Scholar 

  8. Salina, E.A., Adonina, I.G., Badaeva, E.D., et al., A Thinopyrum intermedium chromosome in bread wheat cultivars as a source of gene conferring resistance to fungal diseases, Euphytica, 2015, vol. 204, pp. 91–101. doi 10.1007/s1068-014-1344-5

    Article  CAS  Google Scholar 

  9. Sibikeev, S.N., Voronina, S.A., Badaeva, E.D., and Krupnov, V.A., Identification of an alien chromosome in the bread wheat line Multi 6R, Russ. J. Genet., 2004, vol. 41, no. 8, pp. 885–889.

    Article  Google Scholar 

  10. Sinigovets, M.E., Cytogenetic basics of using wheat grass in wheat breeding, Extended Abstract of Doctoral Dissertation, Kiev, 1988.

    Google Scholar 

  11. Gosreestr selektsionnykh, dostizhenii dopushchennykh k ispol’zovaniyu (State Register of Breeding Achievements Allowed for Use), vol. 1: Sorta rastenii (Plant Cultivars), Moscow, 2015.

  12. Pausheva, Z.P., Praktikum po tsitologii rastenii (Laboratory Course in Plant Cytology), Moscow: Agropromizdat, 1988, pp. 202–203.

    Google Scholar 

  13. Badaeva, E.D., Badaev, N.S., Gill, B.S., et al., Intraspecific karyotype divergence in Triticum araraticum, Plant Syst. Evol., 1994, vol. 192, pp. 117–145. doi 10.1007/BF00985912

    Article  Google Scholar 

  14. Salina, E.A., Lim, Y.K., Badaeva, E.D., et al., Phylogenetic reconstruction of Aegilops section Sitopsis and the evolution of tandem repeats in the diploids and derived wheat polyploids, Genome, 2006, vol. 49, pp. 1023–1035. doi 10.1139/g06-050

    Article  CAS  PubMed  Google Scholar 

  15. Kroupin, P.Yu., Divashuk, M.G., Belov, V.I., et al., Comparative molecular cytogenetic characterization of partial wheat–wheatgrass hybrids, Russ. J. Genet., 2011, vol. 47, no. 4, pp. 432–437.

    Article  CAS  Google Scholar 

  16. Sears, E.R., The aneuploid of common wheat, Mo. Agric. Exp. Stn. Res. Bull., 1954, no. 572, pp. 1–59.

    Google Scholar 

  17. Maistrenko, O.I., Creating a series of monosomic lines of common wheat, Triticum aestivum L., and their use in genetic research, in Tsitogenetika pshenitsy i ee gibridov (Cytogenetics of Wheat and Its Hybrids), Moscow: Nauka, 1971, pp. 57–93.

    Google Scholar 

  18. Millet, E., Avivi, Y., Zaccai, M., and Feldman, M., The effect of substitution of chromosome 5S of Aegilops longissima for its wheat homoeologous on spike morphology and on several quantitative traits, Genome, 1988, vol. 30, pp. 473–478. doi 10.1139/g88-079

    Google Scholar 

  19. Sinigovets, M.E., The transfer of rust resistance from wheat grass to wheat by the addition and substitution of chromosomes, Genetika (Moscow), 1976, vol. 12, no. 9, pp. 13–21.

    Google Scholar 

  20. Dospekhov, B.A., Metodika polevogo opyta (s osnovami statisticheskoi obrabotki rezul’tatov issledovanii) (Methods of Field Experiment (with the Fundamentals of Statistical Processing of the Research Data), Moscow: Agropromizdat, 1985.

    Google Scholar 

  21. Ishikawa, G., Nakamura, T., Ashida, T., et al., Localization of anchor loci representing five hundred annotated rice genes to wheat chromosomes using PLUG markers, Theor. Appl. Genet., 2009, vol. 118, no. 3, pp. 499–514. doi 10.1007/s00122-008-0916-y

    Article  CAS  PubMed  Google Scholar 

  22. Blaszczyk, L., Krämer, I., Ordon, F., et al., Validity of selected DNA markers for breeding leaf rust resistant wheat, Cereal Res. Commun., 2008, vol. 36, no. 2, pp. 201–213.

    Article  CAS  Google Scholar 

  23. Schachermayr, G., Messemer, M., Feuillet, C., et al., Identification of molecular markers linked to the Agropyron elongatum-derived leaf rust resistance gene Lr24 in wheat, Theor. Appl. Genet., 1995, vol. 90, pp. 982–990.

    Article  CAS  PubMed  Google Scholar 

  24. Mago, R., Bariana, H.S., Dundas, I.S., et al., Development or PCR markers for the selection of wheat stem rust resistance genes Sr24 and Sr26 in diverse wheat germplasm, Theor. Appl. Genet., 2005, vol. 111, pp. 496–504.

    Article  CAS  PubMed  Google Scholar 

  25. Procunier, J.D., Townley-Smith, T.F., Fox, S., et al., PCR-based RAPD/DGGE markers linked to leaf rust resistance genes Lr29 and Lr25 in wheat (Triticum aestivum L.), J. Genet. Breed., 1995, vol. 49, pp. 87–92.

    CAS  Google Scholar 

  26. Gupta, S.K., Charpe, A., Koul, S., et al., Development and validation of molecular markers linked to an Aegilops umbellulata-derived leaf rust–resistance gene, Lr9, for marker-assisted selection in bread wheat, Genome, 2005, vol. 48, no. 5, pp. 823–830.

    CAS  PubMed  Google Scholar 

  27. Helguera, M., Khan, I.A., and Dubcovsky, J., Development of PCR markers for wheat leaf rust resistance gene Lr47, Theor. Appl. Genet., 2000, vol. 101, no. 4, pp. 625–631.

    Article  CAS  Google Scholar 

  28. Dorokhov, D.B. and Kloke, E., Rapid and cost-effective technology for the RAPD analysis of plant genomes, Mol. Genet., 1997, vol. 33, no. 4, pp. 443–450.

    Google Scholar 

  29. Gul’tyaeva, E.I., Metody identifikatsii genov ustoichivosti k buroi rzhavchine s ispol’zovaniem DNK-markerov i kharakteristiki effektivnosti Lr-genov (Methods of Identification of Leaf Rust Resistance Genes Using DNA Markers and Performance Characteristics of Lr-Genes), St. Petersburg: Vsesoyuznyi Institut Zashchty Rastenii, 2012.

    Google Scholar 

  30. Metakovsky, E.V. and Novoselskaya, A.Yu., Gliadin allele identification in common wheat: 1. Methodological aspects of the analysis of gliadin patterns by onedimensional polyacrylamide gel electrophoresis, J. Genet. Breed., 1991, vol. 45, no. 4, pp. 317–324.

    Google Scholar 

  31. Metakovsky, E.V., Gliadin allele identification on common wheat: 2. Catalogue of gliadin allele in common wheat, J. Genet. Breed., 1991, vol. 45, no. 4, pp. 325–344.

    Google Scholar 

  32. Aizatulina, Kh.S., Yachevskaya, G.A., and Pereladova, T.N., Genome structure study of Agropyron intermedium (Host) Beauv, Tzitol. Genet., 1989, vol. 23, no. 5, pp. 15–22.

    Google Scholar 

  33. Shulz-Shaenffer, J. and Friebe, B., Karyological characterization of a partial amphiploid Triticum turgidum L. var. durum × Agropyron intermedium (Host) P.B., Theor. Appl. Genet., 1992, vol. 62, pp. 83–88. doi 10.1007/BF00037932

    Google Scholar 

  34. Marais, G.F., Genetic control of response to segregation allele, Sd 1d in the common wheat “Indis,” Euphytica, 1992, vol. 60, pp. 89–95. doi 10.1007/BF00029663

    Google Scholar 

  35. Zubov, D.E., Breeding value of the spring wheat leaf rust resistance donors in the Middle Volga, Extended Abstract of Cand. Sci. (Agric.) Dissertation, Kinel, 2011.

    Google Scholar 

  36. Friebe, B., Raupp, W.J., and Gill, B.S., Wheat–alien translocation lines, Ann. Wheat Newslett. Kans. State Univ., 2000, vol. 46, p. 191.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Sibikeev.

Additional information

Original Russian Text © S.N. Sibikeev, E.D. Badaeva, E.I. Gultyaeva, A.E. Druzhin, A.A. Shishkina, A.Yu. Dragovich, P.Yu. Kroupin, G.I. Karlov, Thi Mai Khuat, M.G. Divashuk, 2017, published in Genetika, 2017, Vol. 53, No. 3, pp. 298–309.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sibikeev, S.N., Badaeva, E.D., Gultyaeva, E.I. et al. Comparative analysis of Agropyron intermedium (Host) Beauv 6Agi and 6Agi2 chromosomes in bread wheat cultivars and lines with wheat–wheatgrass substitutions. Russ J Genet 53, 314–324 (2017). https://doi.org/10.1134/S1022795417030115

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795417030115

Keywords

Navigation