Skip to main content
Log in

Genetic diversity, parentage verification, and genetic bottlenecks evaluation in iranian turkmen horse1

  • Animal Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The present study was undertaken to genetically evaluate Turkmen horses for genetic diversity and to evaluate whether they have experienced any recent genetic bottlenecks. A total of 565 individuals from Turkmen horses were characterized for within breed diversity using 12 microsatellite markers. The estimated mean allelic diversity was (9.42 ± 1.78) per locus, with a total of 131 alleles in genotyped samples. A high level of genetic variability within this breed was observed in terms of high values of effective number of alleles (4.70 ± 1.36), observed heterozygosity (0.757 ± 0.19), expected Nei’s heterozygosity (0.765 ± 0.13), and polymorphism information content (0.776 ± 0.17). The estimated cumulative probability of exclusion of wrongly named parents (PE) was high, with an average value of 99.96% that indicates the effectiveness of applied markers in resolving of parentage typing in Turkmen horse population. The paternity testing results did not show any misidentification and all selected animals were qualified based on genotypic information using a likelihood-based method. Low values of Wright’s fixation index, F IS (0.012) indicated low levels of inbreeding. A significant heterozygote excess on the basis of different models, as revealed from Sign and Wilcoxon sign rank test suggested that Turkmen horse population is not in mutation-drift equilibrium. But, the Modeshift indicator test showed a normal ‘L’ shaped distribution for allelic class and proportion of alleles, thus indicating the absence of bottleneck events in the recent past history of this breed. Further research work should be carrying out to clarify the cause of discrepancy observed for bottleneck results in this breed. In conclusion, despite unplanned breeding in Turkmen horse population, this breed still has sufficient genetic variability and could provide a valuable source of genetic material that may use for meeting the demands of future breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Georgescu, S.E., Manea, M.A., and Costache, M., The genetic structure of indigenous Romanian Hucul horse breed inferred from microsatellite data, Roum. Biotechnol. Lett., 2008, vol. 13, pp. 4030–4036.

    Google Scholar 

  2. Barzev, G., Zhelyazkov, E., Barzeva, V., et al., Genetic diversity in Bulgarian Thoroughbred using microsatellite DNA markers, Agric. Sci. Technol., 2010, vol. 2, pp. 116–120.

    Google Scholar 

  3. Lee, S.Y. and Cho, G.J., Parentage testing of Thoroughbred horse in Korea using microsatellite DNA typing, J. Vet. Sci., 2006, vol. 7, pp. 63–67.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Costa, M.A.P., Bresse, R.M.C., Almeida, D.B., et al., Genotyping in the Brazilian Criollo Horse Stud Book: resources and perspectives, Genet. Mol. Res., 2010, vol. 9, pp. 1645–1653.

    Article  CAS  PubMed  Google Scholar 

  5. Khanshour, A.M., Conat, E.K., Juras, R., and Cothran, E.G., Microsatellite analysis for parentage testing of the Arabian horse breed from Syria, Turk. J. Vet. Anim. Sci., 2013, vol. 37, pp. 9–14.

    CAS  Google Scholar 

  6. Tozaki, T., Kakoi, H., Mashima, S., and Hirota, K., Population study and validation of paternity testing for Thoroughbred horses by 15 microsatellite loci, J. Vet. Med. Sci., 2001, vol. 63, pp. 1191–1197.

    Article  CAS  PubMed  Google Scholar 

  7. Dimsoski, P., Development of a 17-plex microsatellite polymerase chain reaction kit for genotyping horses. Croat. Med. J., 2003, vol. 44, pp. 332–335.

    PubMed  Google Scholar 

  8. Budowle, B., Garofano, P., Hellman, A., and Ketchum, M., Recommendations for animal DNA forensic and identity testing, Int. J. Legal. Med., 2005, vol. 119, pp. 295–302.

    Article  PubMed  Google Scholar 

  9. Solis, A., Jugo, B.M., Meriaux, J.C., et al., Genetic diversity within and among four South European native horse breeds based on microsatellite DNA analysis: implications for conservation, J. Hered., 2005, vol. 96, pp. 670–678.

    Article  CAS  PubMed  Google Scholar 

  10. Guerin, G., Bertaud, M., and Amigues, Y., Characterization of seven new horse microsatellites: HMS1, HMS2, HMS3, HMS5, HMS6, HMS7, and HMS, Anim. Genet., 1994, vol. 25, p. 62.

    CAS  PubMed  Google Scholar 

  11. Ellegren, H., Johansson, M., Sandberg, K., and Andersson, L., Cloning of highly polymorphic microsatellites in the horse, Anim. Genet., 1992, vol. 23, pp. 133–142.

    Article  CAS  PubMed  Google Scholar 

  12. Marklund, S., Ellegren, H., Eriksson, S., et al., Parentage testing and linkage analysis in the horse using a set of highly polymorphic microsatellites, Anim. Genet., 1994, vol. 25, pp. 19–23.

    Article  CAS  PubMed  Google Scholar 

  13. Binns, M.M., Uolmes, N.G., and Holliman, A.M., The identification of polymorphic microsatellite loci in the horse and their use in thoroughbred parentage testing, Brit. Vet. J., 1995, vol. 151, pp. 9–15.

    Article  CAS  Google Scholar 

  14. Van Haeringen, H., Bowling, A.T., Stott, M.L., et al., A highly polymorphic horse microsatellite locus: VHL20, Anim. Genet., 1994, vol. 25, p. 207.

    Article  PubMed  Google Scholar 

  15. Breen, M., Lindgren, G., Binns, M.M., et al., Genetical and physical assignments of equine microsatellites—first integration of anchored markers in horse genome mapping, Mamm. Genome, 1997, vol. 8, pp. 267–273.

    Article  CAS  PubMed  Google Scholar 

  16. Marshall, T.C., A Program Designed for a Large-Scale Parentage Analysis Using Codominance Loci [CERVUS, version 2.0], Edinburgh: Univ. Edinburgh, 2000.

    Google Scholar 

  17. Botstein, D., White, R.L., Skolnick, M., and Davis, R.W., Construction of a genetic linkage map in man using restriction fragment length polymorphism, Am. J. Hum. Genet., 1980, vol. 32, pp. 314–331.

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Kimura, M. and Crow, J.F., The number of alleles that can be maintained in a finite population, Genet., 1964, vol. 49, pp. 725–738.

    CAS  Google Scholar 

  19. Yeh, F.C., Yang, R.C., and Boyle, T., POPGENE. Microsoft Windows-Based Freeware for Population Genetic Analysis: Release 1.31, Edmonton: Univ. Alberta, 1999.

    Google Scholar 

  20. Marshall, T.C., Slate, J., Kruuk, L.E.B., and Pemberton, J.M., Statistical confidence for likelihood based paternity inference in natural populations, Mol. Ecol., 1998, vol. 7, pp. 639–655.

    Article  CAS  PubMed  Google Scholar 

  21. Pandey, A.K., Sharma, R., Singh, Y., et al., Evaluation of genetic variability in Kenkatha cattle by microsatellite markers, Asian-Aust. J. Anim. Sci., 2006, vol. 12, pp. 1685–1690.

    Article  Google Scholar 

  22. Weir, B.S., Inferences about linkage disequilibrium, Biometrics, 1979, vol. 35, pp. 235–254.

    Article  CAS  PubMed  Google Scholar 

  23. Ohta, T. and Kimura, M., The model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a genetic population, Genet. Res., 1973, vol., 22, pp. 201–204.

    Article  CAS  PubMed  Google Scholar 

  24. Di Rienzo, A., Peterson, A., Garza, J.C., et al., Mutational processes of simple sequence repeat loci in human population, Pro. Acad. Sci. U.S.A., 1994, vol. 91, pp. 3166–3170.

    Article  Google Scholar 

  25. Piry, S., Luikart, G., and Cornuet, J.M., Bottleneck: a computer program for detecting recent reductions in effective population using allele frequency data, J. Hered., 1999, vol. 90, pp. 502–503. http://www.ensam.inra.fr/URLB/Bottleneck

    Article  Google Scholar 

  26. Cornuet, J.M. and Luikart, G., Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data, Genet., 1996, vol. 144, pp. 2001–2014.

    CAS  Google Scholar 

  27. Luikart, G., Allendorf, F.W., Cornuet, J.M., and Sherwin, W.B., Distortion of allele frequency distributions provides a test for recent population bottlenecks, J. Hered., 1998, vol. 89, pp. 238–247.

    Article  CAS  PubMed  Google Scholar 

  28. Luιs, C., Juras, R., Oom, M.M., and Cothran, E.G., Genetic diversity and relationships of Portuguese and other horse breeds based on protein and microsatellite loci variation, Anim. Genet., 2007, vol. 38, pp. 20–27.

    Article  Google Scholar 

  29. Georgescu, S.E., Manea, M.A., and Costache, M., The genetic structure of indigenous Romanian Hucul horse breed inferred from microsatellite data, Roum. Biotechnol. Lett., 2008, vol. 13, pp. 4030–4036.

    Google Scholar 

  30. Vostry, L., Kracikova, O., Hofmanova, B., et al., Intraline and inter-line genetic diversity in sire lines of the Old Kladruber horse based on microsatellite analysis of DNA, Czech. J. Anim. Sci., 2011, vol. 56, pp. 163–175.

    Google Scholar 

  31. Zuccaro, A., Bordonaro, S., Criscione, A., et al., Genetic diversity and admixture analysis of Sanfratellano and three other Italian horse breeds assessed by microsatellite markers, Anim., 2008, vol. 2, pp. 991–998.

    Article  CAS  Google Scholar 

  32. Giacomoni, E.H., Fernández-Stolz, G.P., and Freitas, T.R.O., Genetic diversity in the Pantaneiro horse breed assessed using microsatellite DNA markers, Genet. Mol. Res., 2008, vol. 7, pp. 261–270.

    Article  CAS  PubMed  Google Scholar 

  33. Avdi, M. and Banos, G., Genetic diversity and inbreeding in the Greek Skyros horse livestock, Science, 2008, vol. 114, pp. 362–365.

    Google Scholar 

  34. Cho, G.J., Genetic relationship among the Korean native and alien horses estimated by microsatellite polymorphism, Asian-Aust. J. Anim. Sci., 2006, vol. 19, pp. 784–788.

    Article  CAS  Google Scholar 

  35. Tozaki, T., Takezaki, N., Hasegawa, et al., Microsatellite variation in Japanese and Asian horses and their phylogenetic relationship using a European horse outgroup, J. Hered., 2003, vol. 94, pp. 374–380.

    Article  CAS  PubMed  Google Scholar 

  36. Luis, C., Cothran, E.G., and Oom, M.M., Inbreeding and genetic structure in the endangered Sorraia horse breed: implications for its conservation and management, J. Hered., 2007, vol. 98, pp. 232–237.

    Article  CAS  PubMed  Google Scholar 

  37. Manly, B.F.J., The Statistics of Natural Selection, London: Chapman and Hall, 1985.

    Book  Google Scholar 

  38. Jamieson, A., The effectiveness of using co-dominant polymorphic allelic series for [1] checking pedigrees and [2] distinguishing full-sib pair members, Anim. Genet., 1994, vol. 25, suppl. 1, pp. 37–44.

    Article  PubMed  Google Scholar 

  39. Cho, G.J., Microsatellite DNA polymorphism of Thoroughbred horses in Korea, Korean J. Genet., 2002, vol. 24, pp. 177–182.

    CAS  Google Scholar 

  40. Curi, R.A. and Lopes, C.R., Evaluation of nine microsatellite loci and misidentification paternity frequency in a population of Gyr breed bovines, Braz. J. Vet. Res. Anim. Sci., 2002, vol. 39, pp. 129–135.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Farhadi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi-Mianji, G., Nejati-Javaremi, A. & Farhadi, A. Genetic diversity, parentage verification, and genetic bottlenecks evaluation in iranian turkmen horse1 . Russ J Genet 51, 916–924 (2015). https://doi.org/10.1134/S1022795415090082

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795415090082

Keywords

Navigation