Skip to main content
Log in

Inheritance of reversions to male fertility in male-sterile sorghum hybrids with 9E male-sterile cytoplasm induced by environmental conditions

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Heritable phenotypic alterations occurring during plant ontogenesis under the influence of environmental factors are among the most intriguing genetic phenomena. It was found that male-sterile sorghum hybrids in the 9E cytoplasm from the F1 and F2 generations, which were obtained by crossing CMS lines with different fertile lines grown in field conditions, when they have been transferred to greenhouse produce fertile tillers. Lines created by the self-pollination of revertant tillers exhibit complete male fertility upon cultivation under various environments (in the field, “dry plot,” “irrigated plot”). In a number of test-crosses of revertants to CMS lines in the 9E cytoplasm, restoration of male fertility in F1 hybrids was found, indicating that revertants possess functional fertility-restoring genes. A high positive correlation was found between the fertility level of the test-cross hybrids and the hydrothermal coefficient (the ratio of the sum of precipitation to the sum of temperatures) during the booting stage and pollen maturation (r = 0.75…0.91; P < 0.01), suggesting that a high level of plant water availability is needed for the expression of fertility-restoring genes of revertants. These data show that the fertility-restoring genes for the 9E cytoplasm are dominant in conditions of high water availability and recessive in drought conditions; reversions to male fertility are due to up-regulation of fertility-restoring genes by a high level of water availability. Comparative MSAP-analysis of DNA of malesterile and male-fertile test-cross hybrids using HpaII/MspI restrictases and primers to polygalacturonase gene ADPG2, which is required for cell separation during reproductive development, and gene MYB46, the transcription factor regulating secondary wall biosynthesis, revealed differences in the number and the length of amplified fragments. Changes in the methylation of these genes in conditions of drought stress are apparently the reason for male sterility of sorghum hybrids in the 9E cytoplasm. These data demonstrate that methylation of nuclear genes in sterility-inducing cytoplasm may be one of mechanisms causing the CMS phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lukens, L.N. and Zhan, S.H., The plant genome’s methylation status and response to stress, implications for plant improvement, Curr. Opin. Plant Biol., 2007, vol. 10, pp. 317–322.

    Article  CAS  PubMed  Google Scholar 

  2. Fisher, A.J. and Franklin, K.A., Chromatin remodeling in plant light signaling, Physiol. Plant., 2011, vol. 142, pp. 305–313.

    Article  CAS  PubMed  Google Scholar 

  3. Pattanayak, D., Solanke, A.U., and Kumar, P.A., Plant RNA interference pathways: diversity in function, similarity in action, Plant Mol. Biol. Rep., 2013, vol. 31, pp. 493–506.

    Article  CAS  Google Scholar 

  4. Grant-Downton, R.T. and Dickinson, H.G., Epigenetics and its implications for plant biology: 2. The ‘epigenetic epiphany’: epigenetics, evolution and beyond, Ann. Bot., 2006, vol. 97, pp. 11–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Hauser, M.T., Aufsatz, W., Jonak, C., and Luschnig, C., Transgenerational epigenetic inheritance in plants, Biochim. Biophys. Acta, 2011, vol. 1809, no. 8, pp. 459–468.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Paszkowski, J. and Grossniklaus, U., Selected aspects of transgenerational epigenetic inheritance and reset-ting in plants, Curr. Opin. Plant Biol., 2011, vol. 14, pp. 195–203.

    Article  CAS  PubMed  Google Scholar 

  7. Koonin, E.V. and Wolf, Y.I., Is evolution Darwinian or/and Lamarckian?, Biol. Direct., 2009, vol. 4, no. 42. doi 10.1186/1745-6150-4-42

    Google Scholar 

  8. Hanson, M.R. and Bentolila, S., Interactions of mitochondrial and nuclear genes that affect male gametophyte development, Plant Cell, 2004, vol. 16, pp. 154–169.

    Article  Google Scholar 

  9. Fujii, S. and Toriyama, K., Genome barriers between nuclei and mitochondria exemplified by cytoplasmic male sterility, Plant Cell Physiol., 2008, vol. 49, pp. 1484–1494.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Yang, J., Zhang, M., and Yu, J., Mitochondrial retrograde regulation tuning fork in nuclear genes expressions of higher plants, J. Genet. Genomics, 2008, vol. 35, pp. 65–71.

    Article  CAS  PubMed  Google Scholar 

  11. Fernandez, A.P. and Strand, A., Retrograde signaling and plant stress: plastid signals initiate cellular stress responses, Curr. Opin. Plant Biol., 2008, vol. 11, pp. 509–513.

    Article  CAS  PubMed  Google Scholar 

  12. Atkin, O.K. and Macherel, D., The crucial role of plant mitochondria in orchestrating drought tolerance, Ann. Bot., 2009, vol. 103, pp. 581–597.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Estavillo, G.M., Crisp, P.A., Pornsiriwong, W., et al., Evidence for a SAL1-PAP chloroplast retrograde pathway that functions in drought and high light signaling in Arabidopsis, Plant Cell, 2011, vol. 23, pp. 3992–4012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Li, C.-R., Liang, D.-D., Li, J., et al., Unravelling mitochondrial retrograde regulation in the abiotic stress induction of rice alternative oxidase 1 genes, Plant Cell Environ., 2013, vol. 36, pp. 775–788.

    Article  CAS  PubMed  Google Scholar 

  15. Pring, D.R., Tang, H.V., and Schertz, K.F., Cytoplasmic male sterility and organelle DNAs of sorghum, in Molecular Biology of Plant Mitochondria, Levings, C.S. III and Vasil, I.K., Eds., Kluwer, 1995, pp. 461–495.

    Chapter  Google Scholar 

  16. Elkonin, L.A., Kozhemyakin, V.V., and Ishin, A.G., Nuclear-cytoplasmic interactions in restoration of male fertility in the ‘9E’ and A4 CMS-inducing cytoplasms of sorghum, Theor. Appl. Genet., 1998, vol. 97, pp. 626–632.

    Article  Google Scholar 

  17. Elkonin, L.A., Kozhemyakin, V.V., and Ishin, A.G., Influence of water availability on fertility restoration of CMS lines with the ‘M35’, A4 and ‘9E’ CMS-inducing cytoplasms of sorghum, Plant Breed., 2005, vol. 134, pp. 565–571.

    Article  Google Scholar 

  18. Tang, H.V., Pedersen, J.F., Chase, C.D., and Pring, D.R., Fertility restoration of the sorghum A3 male-sterile cytoplasm through a sporophytic mechanism derived from sudangrass, Crop Sci., 2007, vol. 47, pp. 943–950.

    Article  CAS  Google Scholar 

  19. Elkonin, L.A., Kozhemyakin, V.V., and Tsvetova, M.I., Epigenetic control of the expression of fertility-restoring genes for the ‘9E’ CMS-inducing cytoplasm of sorghum, Maydica, 2009, vol. 54, pp. 243–251.

    Google Scholar 

  20. Elkonin, L.A. and Tsvetova, M.I., Heritable effect of plant water availability conditions on restoration of male fertility in the ‘9E’ CMS-inducing cytoplasm of sorghum, Front. Plant Sci., 2012, vol. 3, p. 91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Doyle, J.J. and Doyle, J.L., A rapid total DNA preparation procedure for fresh plant tissue, Focus, 1990, vol. 12, pp. 13–15.

    Google Scholar 

  22. Zaitsev, G.N., Matematicheskaya statistika v eksperimental’noi botanike (Mathematical Statistic in Experimental Botany), Moscow: Nauka, 1984.

    Google Scholar 

  23. Zhong, R., Richardson, E.A., and Ye, Z.-H., The MYB46 transcription factor is a direct target of snd1 and regulates secondary wall biosynthesis in Arabidopsis, Plant Cell, 2007, vol. 19, pp. 2776–2792.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Ogawa, M., Kay, P., Wilson, S., and Swain, S.M., Arabidopsis DEHISCENCE ZONE POLYGALACTU-RONASE1 (ADPG1), ADPG2, and QUARTET2 are polygalacturonases required for cell separation during reproductive development in Arabidopsis, Plant Cell, 2009, vol. 21, pp. 216–233.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Cenci, A., Guignon, V., Roux, N., and Rouard, M., Genomic analysis of NAC transcription factors in banana (Musa acuminata) and definition of NAC orthologous groups for monocots and dicots, Plant. Mol. Biol., 2014, vol. 85, pp. 63–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Patterson, S.E., Cutting loose: abscission and dehiscence in Arabidopsis, Plant Physiol., 2001, vol. 126, pp. 494–500.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Wilson, Z.A., Song, J., Taylor, B., and Yang, C., The final split: the regulation of anther dehiscence, J. Exp. Bot., 2011, vol. 62, pp. 1633–1649.

    Article  CAS  PubMed  Google Scholar 

  28. Xiong, L.Z., Xu, C.G., Shagi-Maroof, M.A., and Zhang, Q., Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique, Mol. Genet. Genomics, 1999, vol. 261, pp. 439–446.

    Article  CAS  Google Scholar 

  29. Shaked, H., Kashkush, K., Ozkan, H., et al., Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat, Plant Cell, 2001, vol. 13, pp. 1749–1759.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Zhao, X.X., Chai, Y., and Liu, B., Epigenetic inheritance and variation of DNA methylation level and pattern in maize intraspecific hybrids, Plant Sci., 2007, vol. 172, pp. 930–938.

    Article  CAS  Google Scholar 

  31. Tan, M.-P., Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism, Plant Physiol. Biochem., 2010, vol. 48, pp. 21–26.

    Article  CAS  PubMed  Google Scholar 

  32. Verhoeven, K.J., Jansen, J.J., van Dijk, P.J., and Biere, A., Stress-induced DNA methylation changes and their heritability in asexual dandelions, New Phytol., 2010, vol. 185, pp. 1108–1118.

    Article  CAS  PubMed  Google Scholar 

  33. Wang, W.-S., Pan, Y.J., Zhao, X.-Q., et al., Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.), J. Exp. Bot., 2011, vol. 62, pp. 1951–1960.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Tricker, P.J., Gibbings, J.G., Lopez, C.M.R., et al., Low relative humidity triggers RNA-directed de novo DNA methylation and suppression of genes controlling stomatal development, J. Exp. Bot., 2012, vol. 63, pp. 3799–3814.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Xu, P., Yan, W., He, J., et al., DNA methylation affected by male sterile cytoplasm in rice (Oryza sativa L.), Mol. Breed., 2013, vol. 31, pp. 719–727.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Elkonin.

Additional information

Original Russian Text © L.A. Elkonin, G.A. Gerashchenkov, I.V. Domanina, N.A. Rozhnova, 2015, published in Genetika, 2015, Vol. 51, No. 3, pp. 312–323.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elkonin, L.A., Gerashchenkov, G.A., Domanina, I.V. et al. Inheritance of reversions to male fertility in male-sterile sorghum hybrids with 9E male-sterile cytoplasm induced by environmental conditions. Russ J Genet 51, 251–261 (2015). https://doi.org/10.1134/S1022795415030035

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795415030035

Keywords

Navigation