Skip to main content
Log in

Construction of highly-effective symbiotic bacteria: Evolutionary models and genetic approaches

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Using the example of N2-fixing legume-rhizobial symbiosis, we demonstrated that the origin and evolution of bacteria symbiotic for plants involve: (i) the formation of novel sym gene systems based on reorganizations of the bacterial genomes and on the gene transfer from the distant organisms; (ii) the loss of genes encoding for functions that are required for autonomous performance but interfere with symbiotic functions (negative regulators of symbiosis). Therefore, the construction of effective rhizobia strains should involve improvement of sym genes activities (for instance, nif, fix, and dct genes encoding for nitrogenase synthesis or for the energy supply of N2 fixation), as well as the inactivation of negative regulators of symbiosis identified in our lab (eff genes encoding for the transport of sugars and the production of polysaccharides and storage compounds, as well as for oxidative-reductive processes).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Tikhonovich, I.A. and Provorov, N.A., Simbiozy rastenii i mikroorganizmov: molekulyarnaya genetika agrosistem budushchego (Symbioses of Plants and Microorganisms: Molecular Genetics of Future Agricultural Systems), St. Petersburg: St. Petersburg Gos. Univ., 2009.

    Google Scholar 

  2. Tikhonovich, I.A. and Provorov, N.A., Agricultural microbiology as the basis for ecologically sustainable agriculture: fundamental and applied aspects, S-kh. Biol., 2011, no. 3, pp. 3–9.

    Google Scholar 

  3. Provorov, N.A. and Vorob’ev, N.I., Geneticheskie osnovy evolyutsii rastitel’no-mikrobnogo simbioza (Evolutionary Genetics of Plant-Microbe Symbioses), Tikhonovich, I.A., Ed., St. Petersburg: Inform-Navigator, 2012.

  4. Franche, C., Lindström, K., and Elmerich, C., Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants, Plant Soil, 2009, vol. 321, pp. 35–59.

    Article  CAS  Google Scholar 

  5. Tikhonovich, I.A. and Provorov, N.A., Development of symbiogenetic approaches for studying variation and heredity of superspecies systems, Russ. J. Genet., 2012, vol. 48, no. 4, pp. 357–368.

    Article  CAS  Google Scholar 

  6. Provorov, N.A. and Tikhonovich, I.A., Genetic and molecular bases of symbiotic adaptations, Usp. Sovrem. Biol., 2014, vol. 134, no. 3, pp. 211–226.

    Google Scholar 

  7. Provorov, N.A., Tsyganova, A.V., Brewin, N.J., et al., Evolution of symbiotic bacteria within the extra- and intra-cellular plant compartments: experimental evidence and mathematical simulation (mini-review), Symbiosis, 2012, vol. 58, pp. 39–50.

    Article  Google Scholar 

  8. Wilkinson, D.M., The role of seed dispersal in the evolution of mycorrhizae, Oikos, 1997, vol. 78, pp. 394–396.

    Article  Google Scholar 

  9. Downie, J.A. and Young, J.P.W., The ABC of symbiosis, Nature, 2001, vol. 412, pp. 597–598.

    Article  CAS  PubMed  Google Scholar 

  10. Guo, H., Sun, S., Eardly, D., et al., Genome variation in the symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti, Genome, 2009, vol. 52, pp. 862–872.

    Article  CAS  PubMed  Google Scholar 

  11. Pini, F., Galardini, M., Bazzicalupo, M., and Mengoni, A., Plant-bacteria association and symbiosis: are there common genomic traits in Alphaproteobacteria?, Genes, 2011, vol. 2, pp. 1017–1032.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Hirsch, A.M., Lum, M.R., and Downie, J.A., What makes the rhizobia-legume symbiosis so special?, Plant Physiol., 2001, vol. 127, pp. 1484–1492.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Maillet, F., Poinsot, V., Andre, O., et al., Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza, Nature, 2011, vol. 469, pp. 58–65.

    Article  CAS  PubMed  Google Scholar 

  14. Jording, D., Uhde, C., Schmidt, R., and Pühler, A., The C4-dicarboxylate transport system of Rhizobium meliloti and its role in nitrogen fixation during symbiosis with alfalfa (Medicago sativa), Experientia, 1994, vol. 5, pp. 874–883.

    Article  Google Scholar 

  15. Bosworth, A.H., Williams, M.K., Albrecht, K.A., et al., Alfalfa yield response to inoculation with the recombinant strains of Rhizobium meliloti with an extra copy of dctABD and/or modified nifA expression, Appl. Environ. Microbiol., 1994, vol. 60, pp. 3815–3832.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. McClung, G., Commercialization of a genetically modified symbiotic nitrogen fixer, Sinorhizobium meliloti, Mitt. Biol. Bundesanst. Land Forstwirtsch., 2000, vol. 380, pp. 100–106.

    Google Scholar 

  17. Rastogi, V., Labes, M., Finan, T., and Watson, R., Over-expression of the dctA gene in Rhizobium meliloti: effect on transport of C4 dicarboxylates and symbiotic nitrogen fixation, Can. J. Microbiol., 1992, vol. 38, pp. 555–562.

    Article  CAS  PubMed  Google Scholar 

  18. Onishchuk, O.P., Vorob’ev, N.I., Provorov, N.A., and Simarov, B.V., Symbiotic activity of alfalfa rhizobia (Sinorhizobium meliloti) strains with genetically modified transport of dicarboxylic acids, Ekol. Genet., 2009, vol. 7, no. 2, pp. 3–10.

    Google Scholar 

  19. Provorov, N.A., Chuklina, J., Vorobyov, N.I., et al., Factor analysis of interactions between alfalfa nodule bacteria (Sinorhizobium meliloti) genes that regulate symbiotic nitrogen fixation, Russ. J. Genet., 2013, vol. 49, no. 4, pp. 388–393.

    Article  CAS  Google Scholar 

  20. Pankhurst, C.E., Macdonald, P.E., and Reeves, J.M., Enhanced nitrogen fixation and competitiveness for nodulation of Lotus pedunculatus by a plasmid-cured derivative of Rhizobium loti, J. Gen. Microbiol., 1986, vol. 132, pp. 2321–2328.

    CAS  Google Scholar 

  21. Sharypova, L.A., Onishchuk, O.P., Chesnokova, O.N., et al., Isolation and characterization of Rhizobium meliloti Tn5 mutants showing enhanced symbiotic effectiveness, Microbiology (Moscow), 1994, vol. 140, pp. 463–470.

    CAS  Google Scholar 

  22. Sharypova L.A. and Simarov B.V., Identification of genes affecting symbiotic effectiveness of Rhizobium meliloti, in Nitrogen Fixation: Fundamentals and Applications, Tikhonovich, I.A., Provorov, N.A., Romanov, V.I., and Newton W., Eds., Dordrecht: Kluwer, 1995, pp. 371–376.

    Google Scholar 

  23. Sharypova, L.A., Yurgel, S.N., Keller, M., et al., The eff-482 locus of Sinorhizobium meliloti CXM1-105 that influences symbiotic effectiveness consists of three genes encoding an endoglucanase, a transcriptional regulator and an adenylate cyclase, Mol. Gen. Genet., 1999, vol. 261, pp. 1032–1044.

    Article  CAS  PubMed  Google Scholar 

  24. Bagirova, S.F., Dzhavakhiya, V.G., D’yakov, Yu.T., et al., Fundamental’naya fitopatologiya (Fundamental Phytopathology), Moscow: Krasand, 2012.

    Google Scholar 

  25. Miranda, J., Membrillo-Hernandez, J., Tabche, M.L., and Soberon, M., Rhizobium etli cytochrome mutants with derepressed expression of cytochrome terminal oxidases and enhanced symbiotic nitrogen accumulation, Appl. Microbiol. Biotechnol., 1996, vol. 45, pp. 182–188.

    Article  CAS  Google Scholar 

  26. Soberon, M., Lopez, O., Morera, C., et al., Enhanced nitrogen fixation in a Rhizobium etli ntrC mutant that overproduces the Bradyrhizobium japonicum symbiotic terminal oxidase cbb3, Appl. Environ. Microbiol., 1999, vol. 65, pp. 2015–2019.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Soberon, M., Lopez, O., Miranda, J., et al., Genetic evidence for 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) as a negative effector of cytochrome terminal oxidase cbb3 production in Rhizobium etli, Mol. Gen. Genet., 1997, vol. 254, pp. 665–667.

    Article  CAS  PubMed  Google Scholar 

  28. Soberon, M., Williams, H.D., Poole, R.K., and Escamilla, E., Isolation of a Rhizobium phaseoli cytochrome mutant with enhanced respiration and symbiotic nitrogen fixation, J. Bacteriol., 1989, vol. 171, pp. 465–472.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Yurgel, S.N., Sharypova, L.A., Syrtsova, L.A., et al., Respiratory activity and symbiotic effectiveness in the nodule bacterium Rhizobium meliloti, Mikrobiologiya, 1996, vol. 65, no. 4, pp. 517–521.

    Google Scholar 

  30. Yurgel, S.N., Sharypova, L.A., and Simarov, B.V., Mutations Tn5 of Rhizobium meliloti enhancing the redox potential of free-living cells and the effectiveness of their symbiosis with alfalfa, Russ. J. Genet., 1998, vol. 34, no. 6, pp. 601–605.

    CAS  Google Scholar 

  31. Chizhevskaya, E.P., Krol’, E.A., Onishchuk, O.P., et al., Physical and genetic mapping of mutations for symbiotic effectiveness on megaplasmid-2 of the Rhizobium meliloti strain CXM1, Russ. J. Genet., 1998, vol. 34, no. 9, pp. 1027–1033.

    CAS  Google Scholar 

  32. Krol, E.A., Soberon, M., Yurgel, S.N., et al., Sinorhizobium meliloti megaplasmid 2 oligopeptide transport system permease protein (oppC) gene, partial cds; and RedA (redA) and putative glycosyltransferase (redB) genes, complete cds. gi|4929436|gb| AF148072.1|AF148072[4929436]. AF148072.

  33. Yurgel, S.N., Soberon, M., Sharypova, L.A., et al., Isolation of Sinorhizobium meliloti Tn5 mutants with altered cytochrome terminal oxidase expression and improved symbiotic performance, FEMS Microbiol. Lett., 1998, vol. 165, pp. 167–173.

    Article  CAS  PubMed  Google Scholar 

  34. Peralta, H., Mora, Y., Salazar, E., et al., Engineering the nifH promoter region and abolishing poly-betahydroxybutyrate accumulation in Rhizobium etli enhance nitrogen fixation in symbiosis with Phaseolus vulgaris, Appl. Environ. Microbiol., 2004, vol. 70, pp. 3272–3281.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Peoples, O.P. and Sinskey, A.J., Polyhydroxybutyrate biosynthesis in Alcaligenes eutrophus H16: identification and characterization of the genes encoding β-ketothiolase and acetoacetyl-CoA reductase, J. Biol. Chem., 1989, vol. 264, pp. 15293–15297.

    CAS  PubMed  Google Scholar 

  36. Marroqui, S., Zorreguieta, A., Santamaria, C., et al., Enhanced symbiotic performance by Rhizobium tropici glycogen synthase mutants, J. Bacteriol., 2001, vol. 183, pp. 854–864.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Provorov, N.A., Simarov, B.V., and Fedorov, S.N., Symbiotic properties of various types of mutants of nodule bacteria, Izv. Akad. Nauk SSSR, Ser. Biol., 1985, no. 6, pp. 870–884.

    Google Scholar 

  38. Simarov, B.V., Aronshtam, A.A., Novikova, N.I., et al., Geneticheskie osnovy selektsii kluben’kovykh bakterii (Genetic Basis for the Nodule Bacteria Selection), Leningrad: Agropromizdat, 1990.

    Google Scholar 

  39. Maier, R. and Brill, W.J., Mutant strains of Rhizobium japonicum with increased ability to fix nitrogen for soybean, Science, 1978, vol. 201, pp. 448–450.

    Article  CAS  PubMed  Google Scholar 

  40. Hungria, M., Neves, M.C.P., and Döbereiner, J., Relative efficiency, ureide transport and harvest index in soybeans inoculated with isogenic HUP mutants of Bradyrhizobium japonicum, Biol. Fertil. Soil, 1989, vol. 7, pp. 325–329.

    Google Scholar 

  41. Chen, H., Richardson, A.E., Gartner, E., et al., Construction of an acid-tolerant Rhizobium leguminosarum bv. trifolii strain with enhanced capacity of nitrogen fixation, Appl. Environ. Microbiol., 1991, vol. 57, pp. 2005–2011.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Spaink, H.P., Okker, R.J., Wijffelman, C.A., et al., Symbiotic properties of rhizobia containing a flavonoid-independent hybrid nodD product, J. Bacteriol., 1989, vol. 171, pp. 4045–4053.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Shlaman, Kh., Fillips, D., and Kondoroshi, E., Genetic organization and transcriptional regulation of rhizobia genes controlling nodulation, in Rhizobiaceae: molekulyarnaya biologiya bakterii, vzaimodeistvuyushchikh s rasteniyami (Rhizobiaceae: Molecular Biology of Bacteria Interacting with Plants), Spaink, G., Kondoroshi, A., and Khukas, P., Eds., St. Petersburg: Biont, 2002, pp. 389–416.

    Google Scholar 

  44. Kaminski, P., Batut, Zh., and Boistard, P., Control of symbiotic nitrogen fixation by rhizobia, in Rhizobiaceae: molekulyarnaya biologiya bakterii, vzaimodeistvuyushchikh s rasteniyami (Rhizobiaceae: Molecular Biology of Bacteria Interacting with Plants), Spaink, G., Kondoroshi, A., and Khukas, P., Eds., St. Petersburg: Biont, 2002, pp. 465–492.

    Google Scholar 

  45. Vens, S., Symbiotic nitrogen fixation in legumes: agronomic aspects, in Rhizobiaceae: molekulyarnaya biologiya bakterii, vzaimodeistvuyushchikh s rasteniyami (Rhizobiaceae: Molecular Biology of Bacteria Interacting with Plants), Spaink, G., Kondoroshi, A., and Khukas, P., Eds., St. Petersburg: Biont, 2002, pp. 541–564.

    Google Scholar 

  46. Matiru, V.N. and Dakora, F.D., Xylem transport and shoot accumulation of lumichrome, a newly recognized rhizobial signal, alters root respiration, stomatal conductance, leaf transpiration and photosynthetic rates in legumes and cereals, New Phytol., 2005, vol. 165, pp. 847–855.

    Article  CAS  PubMed  Google Scholar 

  47. Novak, K., On the efficiency of legume supernodulating mutants, Ann. Appl. Biol., 2010, vol. 157, pp. 321–342.

    Article  CAS  Google Scholar 

  48. Provorov, N.A., Improvement of symbiotic nitrogen fixation in plants: molecular-genetic approaches and evolutionary models, Russ. J. Plant Physiol., 2013, vol. 60, no. 1, pp. 27–32.

    Article  CAS  Google Scholar 

  49. Provorov, N.A., Shtark, O.Y., Zhukov, V.A., et al., Developmental Genetics of Plant-Microbe Symbioses, New York: NOVA, 2010.

    Google Scholar 

  50. Shtark, O.Y., Borisov, A.Y., Zhukov, V.A., et al., Intimate associations of beneficial soil microbes with host plants, in Soil Microbiology and Sustainable Crop Production, Dixon, R. and Tilston, E., Eds., Berlin: Springer-Verlag, 2010, pp. 119–196.

    Chapter  Google Scholar 

  51. Lie, T.A., Göktan, D., Engin, M., et al., Co-evolution of the legume-Rhizobium association, Plant Soil, 1987, vol. 100, pp. 171–181.

    Article  Google Scholar 

  52. Provorov, N.A., Zhukov, V.A., Kurchak, O.N., et al., Comigration of root nodule bacteria and bean plants to new habitats: coevolution mechanisms and practical importance, Appl. Biochem. Microbiol., 2013, vol. 49, no. 3, pp. 209–214.

    Article  CAS  Google Scholar 

  53. Onishchuk, O.P. and Simarov, B.V., Genes controlling nodulation competitiveness of nodule bacteria, Russ. J. Genet., 1996, vol. 32, no. 9, pp. 1157–1166.

    Google Scholar 

  54. Capela, D., Barloy-Hubler, F., and Gouzy, J., Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, no. 17, pp. 9877–9882.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Barnett, M.J., Fisher, R.F., Jones, T., et al., Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, pp. 9883–9888.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Finan, T.M., Weidner, S., Chain, P., et al., The complete sequence of the 1,683 kilobase pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, pp. 9889–9894.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. García-Rodríguez, F.M. and Toro, N., Sinorhizobium meliloti nfe (nodule formation efficiency) genes exhibit temporal and spatial expression patterns similar to those of genes involved in symbiotic nitrogen fixation, Mol. Plant-Microbe Interact., 2000, vol. 13, pp. 583–591.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Provorov.

Additional information

Original Russian Text © N.A. Provorov, O.P. Onishchuk, S.N. Yurgel, O.N. Kurchak, E.P. Chizhevskaya, N.I. Vorobyov, T.V. Zatovskaya, B.V. Simarov, 2014, published in Genetika, 2014, Vol. 50, No. 11, pp. 1273–1285.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Provorov, N.A., Onishchuk, O.P., Yurgel, S.N. et al. Construction of highly-effective symbiotic bacteria: Evolutionary models and genetic approaches. Russ J Genet 50, 1125–1136 (2014). https://doi.org/10.1134/S1022795414110118

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795414110118

Keywords

Navigation