Skip to main content
Log in

Inheritable changes in miRNAs expression in HeLa cells after X-ray and mitomycin C treatment

  • Molecular Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

We identified 40 miRNAs with inherited aberrant expression by multiple parallel sequencing of human HeLa cells irradiated with X rays and mitomycin C. Twenty-two miRNAs were repressed and 15 miRNAs were induced after radiation and mytomycin C treatment. The expression of three miRNAs (miR-10b-5p, miR-148a-3p, and miR-340-5p) decreased after X-ray exposure and increased after mitomycin C treatment. The spectrum of aberrantly expressed miRNAs after X-ray and mitomycin C treatment is different, except for three miRNAs (mir-100-5p, miR-99b-5p, miR-501-3p), which showed the inherited decreased expression after both mutagens. It has been ascertained that for five miRNAs (miR-21-3p, miR-182-5p, miR-19b-3p, miR-30a-3p, and miR-30e-3p) with increased inherited expression, the targets are well-described tumor suppressor genes. For 9 miRNAs (miR-99b-5p, miR-148a-3p, miR-365a-3p, miR-193a-3p, miR-100-5p, miR-99a-5p, miR-29b-3p, miR-340-5p, and miR-23b-3p) with reduced inherited expression, the targets are oncogenes. The obtained results provide further support of the idea that induced epigenetic changes in the genome should be considered when assessing the long-term genetic effects of ionizing radiation and chemical compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, X. and Chen, T., Roles of microRNA in DNA damage and repair, DNA Repair, Kruman, I., Ed., InTech, 2011, pp. 341–354.

    Google Scholar 

  2. http://www.mirbase.org/cgi-bin/browse.pl?org=hsa

  3. Furuta, M., Kozaki, K., Tanimoto, K., et al., The tumor-suppressive miR-497-195 cluster targets multiple cell-cycle regulators in hepatocellular carcinoma, PLoS One, 2013, vol. 8, no. 3. p. e60155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Rong, M., Chen, G., and Dang, Y., Increased MiR-221 expression in hepatocellular carcinoma tissues and its role in enhancing cell growth and inhibiting apoptosis in vitro, BMC Cancer, 2013, vol. 13, p. 21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Zheng, Y.S., Zhang, H., Zhang, X.J., et al., MiR-100 regulates cell differentiation and survival by targeting RBSP3, a phosphatase-like tumor suppressor in acute myeloid leukemia, Oncogene, 2012, vol. 31, no. 1, pp. 80–92.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Landau, D.A. and Slack, F.J., MicroRNAs in mutagenesis, genomic instability and DNA repair, Semin. Oncol., 2011, vol. 38, no. 6, pp. 743–751.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Mazar, J., Khaitan, D., DeBlasio, D., et al., Epigenetic regulation of microRNA genes and the role of miR-34b in cell invasion and motility in human melanoma, PLoS One, 2011, vol. 6, no. 9. p. e24922

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Wang, W., Cheng, B., Miao, L., et al., Mutant p53-R273H gains new function in sustained activation of EGFR signaling via suppressing miR-27a expression, Cell Death Dis., 2013, vol. 4, no. 4. p. e574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Lee, Y., Kim, M., Han, J., et al., MicroRNA genes are transcribed by RNA polymerase II, EMBO J., 2004, vol. 23, no. 20, pp. 4051–4060.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. He, X.J., Hsu, Y.F., Zhu, S., et al., An effector of RNA-directed DNA methylation in Arabidopsis is an ARGO-NAUTE 4- and RNA-binding protein, Cell, 2009, vol. 137, pp. 498–508.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Chellappan, P., Xia, J., Zhou, X., et al., siRNAs from miRNA sites mediate DNA methylation of target genes, Nucleic Acids Res., 2010, vol. 38, no. 20, pp. 6883–6894.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kim, D.H., Saetrom, P., Snove, O., Jr., and Rossi, J.J., MicroRNA directed transcriptional gene silencing in mammalian cells, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, no. 42, pp. 16230–16235.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Younger, S.T. and Corey, D.R., Transcriptional gene silencing in mammalian cells by miRNA mimics that target gene promoters, Nucleic Acids Res., 2011, vol. 39, no. 13, pp. 5682–5691.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Zardo, G., Ciolfi, A., Vian, L., et al., Polycombs and microRNA-223 regulate human granulopoiesis by transcriptional control of target gene expression, Blood, 2012, vol. 119, no. 17, pp. 4034–4046.

    Article  CAS  PubMed  Google Scholar 

  15. Zhao, S., Yao, D.S., Chen, J.Y., et al., Aberrant expression of miR-20a and miR-203 in cervical cancer, Asian Pac. J. Cancer Prev., 2013, vol. 14, no. 4, pp. 2289–2293.

    Article  PubMed  Google Scholar 

  16. Sokolov, M.V., Panyutin, I.V., and Neumann, R.D., Unraveling the global microRNAome responses to ionizing radiation in human embryonic stem cells, PLoS One, 2012, vol. 7. p. e31028

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Templin, T., Paul, S., Amundson, S.A., et al., Radiation-induced micro-RNA expression changes in peripheral blood cells of radiotherapy patients, Int. J. Radiat. Oncol. Biol. Phys., 2012, vol. 80, pp. 549–557.

    Article  Google Scholar 

  18. Iorio, M.V. and Croce, C.M., MicroRNA involvement in human cancer, Carcinogenesis, 2012, vol. 33, pp. 1126–1133.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Kumar, S., Kumar, A., Shah, P.P., et al., MicroRNA signature of cis-platin resistant vs. cis-platin sensitive ovarian cancer cell lines, J. Ovarian Res., 2011, vol. 4, no. 1, p. 17.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Tan, G., Shi, Y., and Wu, Z.H., MicroRNA-22 promotes cell survival upon UV radiation by repressing PTEN, Biochem. Biophys. Res. Commun., 2012, vol. 417, pp. 546–551.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Chaudhry, M.A., Omaruddin, R.A., Kreger, B., et al., MicroRNA responses to chronic or acute exposures to low dose ionizing radiation, Mol. Biol. Rep., 2012, vol. 39, pp. 549–558.

    Article  Google Scholar 

  22. Chaudhry, M.A., Kreger, B., and Omaruddin, R.A., Transcriptional modulation of micro-RNA in human cells differing in radiation sensitivity, Int. J. Radiat. Biol., 2010, vol. 86, pp. 569–583.

    Article  CAS  PubMed  Google Scholar 

  23. Chaudhry, M.A., Omaruddin, R.A., Brumbaugh, C.D., et al., Identification of radiation-induced microRNA transcriptome by next-generation massively parallel sequencing, J. Radiat. Res., 2013, vol. 54, no. 5, pp. 808–822.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Chomczynski, P. and Sacchi, N., Single-step method of RNA isolation by acid guanidinium thiocyanatephenol-chloroform extraction, Anal. Biochem., 1987, vol. 162, pp. 156–159.

    Article  CAS  PubMed  Google Scholar 

  25. Maniatis, T., Fritsch, E.F., and Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor: Cold Spring Harbor Laboratory, 1982.

    Google Scholar 

  26. Robinson, M.D., McCarthy, D.J., and Smyth, G.K., edgeR: a bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, 2010, vol. 26, pp. 139–140.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Robinson, M.D. and Smyth, G.K., Small sample estimation of negative binomial dispersion, with applications to SAGE data, Biostatistics, 2008, vol. 9, pp. 321–332.

    Article  PubMed  Google Scholar 

  28. Robinson, M.D. and Oshlack, A., A scaling normalization method for differential expression analysis of RNA-seq data, Genome Biol., 2010, vol. 11, p. R25.

    Article  PubMed Central  PubMed  Google Scholar 

  29. McCarthy, D.J., Chen, Y., and Smyth, G.K., Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation, Nucleic Acids Res., 2012, vol. 40, pp. 4288–4297.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Shen, J., Wang, S., Zhang, Y.J., et al., Genome-wide aberrant DNA methylation of microRNA host genes in hepatocellular carcinoma, Epigenetics, 2012, vol. 7, no. 11, pp. 1230–1237.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Vrba, L., Muñoz-Rodríguez, J.L., Stampfer, M.R., and Futscher, B.W., MiRNA gene promoters are frequent targets of aberrant DNA methylation in human breast cancer, PLoS One, 2013, vol. 8, no. 1. p. e54398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Baer, C., Claus, R., Frenzel, L.P., et al., Extensive promoter DNA hypermethylation and hypomethylation is associated with aberrant microRNA expression in chronic lymphocytic leukemia, Cancer Res., 2012, vol. 72, no. 15, pp. 3775–3785.

    Article  CAS  PubMed  Google Scholar 

  33. Matsuoka, S., Ballif, B.A., and Smogorzewska, A., ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage, Science, 2007, vol. 316, no. 5828, pp. 1160–1166.

    Article  CAS  PubMed  Google Scholar 

  34. Chen, P.L., Chen, Y.M., Bookstein, R., and Lee, W.H., Genetic mechanisms of tumor suppression by the human p53 gene, Science, 1990, vol. 250, no. 4987, pp. 1576–1580.

    Article  CAS  PubMed  Google Scholar 

  35. Junttila, M.R., Karnezis, A.N., Garcia, D., et al., Selective activation of p53-mediated tumor suppression in high-grade tumors, Nature, 2010, vol. 468, pp. 567–571.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Baker, S.J., Fearon, E.R., Nigro, J.M., et al., Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas, Science, 1989, vol. 244, pp. 217–221.

    Article  CAS  PubMed  Google Scholar 

  37. Buscaglia, L.E.B. and Li, Y., Apoptosis and the target genes of miR-21, Chin. J. Cancer, 2011, vol. 30, no. 6, pp. 371–380.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Chao, T.F., Xiong, H.H., Liu, W., et al., MiR-21 mediates the radiation resistance of glioblastoma cells by regulating PDCD4 and hMSH2, J. Huazhong Univ. Sci. Technol. Med. Sci., 2013, vol. 33, no. 4, pp. 525–529.

    Article  CAS  PubMed  Google Scholar 

  39. Bao, L., Yan, Y., Xu, C., et al., MicroRNA-21 suppresses PTEN and hSulf-1 expression and promotes hepatocellular carcinoma progression through AKT/ERK pathways, Cancer Lett., 2013, vol. 337, no. 2, pp. 226–236.

    Article  CAS  PubMed  Google Scholar 

  40. Moskwa, P., Buffa, F.M., Pan, Y., et al., MiR-182-mediated down-regulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors, Mol. Cell, 2011, vol. 41, no. 2, pp. 210–220.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Hirata, H., Ueno, K., Shahryari, V., et al., Oncogenic miRNA-182-5p targets Smad4 and RECK in human bladder cancer, PLoS One, 2012, vol. 7, no. 11. p. e51056

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Tian, L., Fang, Y.X., Xue, J.L., and Chen, J.Z., Four microRNAs promote prostate cell proliferation with regulation of PTEN and its downstream signals in vitro, PLoS One, 2013, vol. 8, no. 9. p. e75885

    Article  PubMed Central  PubMed  Google Scholar 

  43. Lee, H., Park, C.S., Deftereos, G., et al., MicroRNA expression in ovarian carcinoma and its correlation with clinicopathological features, World J. Surg. Oncol., 2012, vol. 10, p. 174.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Kang, J., Lee, S.Y., Lee, S.Y., et al., MicroRNA-99b acts as a tumor suppressor in non-small cell lung cancer by directly targeting fibroblast growth factor receptor 3, Exp. Ther. Med., 2012, vol. 3, no. 1, pp. 149–153.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Zhang, H., Li, Y., Huang, et al., MiR-148a promotes apoptosis by targeting Bcl-2 in colorectal cancer, Cell Death Differ., 2011, vol. 18, no. 11, pp. 1702–1710.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Nie, J., Liu, L., Zheng, W., et al., MicroRNA-365, down-regulated in colon cancer, inhibits cell cycle progression and promotes apoptosis of colon cancer cells by probably targeting Cyclin D1 and Bcl-2, Carcinogenesis, 2012, vol. 33, no. 1, pp. 220–225.

    Article  CAS  PubMed  Google Scholar 

  47. Kwon, J.E., Kim, B.Y., Kwak, S.Y., et al., Ionizing radiation-inducible microRNA miR-193a-3p induces apoptosis by directly targeting Mcl-1, Apoptosis, 2013, vol. 18, no. 7, pp. 896–909.

    Article  CAS  PubMed  Google Scholar 

  48. Li, X.J., Luo, X.Q., Han, B.W., et al., MicroRNA100/99a, deregulated in acute lymphoblastic leukaemia, suppress proliferation and promote apoptosis by regulating the FKBP51 and IGF1R/mTOR signalling pathways, Br. J. Cancer, 2013, vol. 109, no. 8, pp. 2189–2198.

    Article  CAS  PubMed  Google Scholar 

  49. Li, Y., Wang, H., Tao, K., et al., MiR-29b suppresses CML cell proliferation and induces apoptosis via regulation of BCR/ABL1 protein, Exp. Cell Res., 2013, vol. 319, no. 8, pp. 1094–10101.

    Article  CAS  PubMed  Google Scholar 

  50. Wu, Z.S., Wu, Q., Wang, C.Q., et al., MiR-340 inhibition of breast cancer cell migration and invasion through targeting of oncoprotein c-Met, Cancer, 2011, vol. 117, no. 13, pp. 2842–2852.

    Article  CAS  PubMed  Google Scholar 

  51. Majid, S., Dar, A.A., Saini, S., et al., MiR-23b represses proto-oncogene Src kinase and functions as methylation-silenced tumor suppressor with diagnostic and prognostic significance in prostate cancer, Cancer Res., 2012, vol. 72, no. 24, pp. 6435–6446.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Struewing, J.P., Abeliovich, D., Peretz, T., et al., The carrier frequency of the BRCA1 185delAG mutation is approximately 1 percent in Ashkenazi Jewish individuals, Nat. Genet., 1995, vol. 11, pp. 198–200.

    Article  CAS  PubMed  Google Scholar 

  53. Weber, T.K., Conlon, W., Petrelli, N.J., et al., Genomic DNA-based hMSH2 and hMLH1 mutation screening in 32 Eastern United States hereditary nonpolyposis colorectal cancer pedigrees, Cancer Res., 1997, vol. 57, pp. 3798–3803.

    CAS  PubMed  Google Scholar 

  54. Hisada, M., Garber, J.E., Fung, C.Y., et al., Multiple primary cancers in families with Li-Fraumeni syndrome, J. Natl. Cancer Inst., 1998, vol. 90, no. 8, pp. 606–611.

    Article  CAS  PubMed  Google Scholar 

  55. Pilarski, R., Cowden syndrome: a critical review of the clinical literature, J. Genet. Couns., 2009, vol. 18, no. 1, pp. 13–27.

    Article  PubMed  Google Scholar 

  56. Muggerud, A.A., Rønneberg, J.A., Wärnberg, F., et al., Frequent aberrant DNA methylation of ABCB1, FOXC1, PPP2R2B and PTEN in ductal carcinoma in situ and early invasive breast cancer, Breast Cancer Res., 2010, vol. 12, no. 1, p. R3.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Shioda, T., Lechleider, R.J., Dunwoodie, S.L., et al., Transcriptional activating activity of Smad4: roles of SMAD hetero-oligomerization and enhancement by an associating transactivator, Proc. Natl. Acad. Sci. U.S.A., 1998, vol. 95, pp. 9785–9790.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Chissoe, S.L., Bodenteich, A., Wang, Y.F., et al., Sequence and analysis of the human ABL gene, the BCR gene, and regions involved in the Philadelphia chromosomal translocation, Genomics, 1995, vol. 27, pp. 67–82.

    Article  CAS  PubMed  Google Scholar 

  59. Bakhshi, A., Wright, J.J., Graninger, W., et al., Mechanism of the t(14; 18) chromosomal translocation: structural analysis of both derivative 14 and 18 reciprocal partners, Proc. Natl. Acad. Sci. U.S.A., 1987, vol. 84, pp. 2396–2400.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Blume-Jensen, P. and Hunter, T., Oncogenic kinase signaling, Nature, 2001, vol. 411, pp. 355–365.

    Article  CAS  PubMed  Google Scholar 

  61. Inuzuka, H., Fukushima, H., Shaik, S., et al., Mcl-1 ubiquitination and destruction, Oncotarget, 2011, vol. 2, no. 3, pp. 239–244.

    PubMed Central  PubMed  Google Scholar 

  62. Kozopas, K.M., Yang, T., Buchan, H.L., et al., Mcl1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to Bcl2, Proc. Natl. Acad. Sci. U.S.A., vol. 90, no. 8, pp. 3516–3520.

  63. Yu, S., Yu, Y., Zhao, N., et al., c-Met as a prognostic marker in gastric cancer: a systematic review and metaanalysis, PLoS One, 2013, vol. 8, no. 11. p. e79137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Kelleher, F.C., O’Sullivan, H., Smyth, E., et al., Fibroblast growth factor receptors, developmental corruption and malignant disease, Carcinogenesis, 2013, vol. 34, no. 10, pp. 2198–21205.

    Article  CAS  PubMed  Google Scholar 

  65. Zou, C., Ma, J., Wang, X., et al., Lack of Fas antagonism by Met in human fatty liver disease, Nat. Med., 2007, vol. 13, pp. 1078–1085.

    Article  CAS  PubMed  Google Scholar 

  66. Ng, W.L., Yan, D., Zhang, X., et al., Over-expression of miR-100 is responsible for the low-expression of ATM in the human glioma cell line: M059J, DNA Repair (Amsterdam), 2010, vol. 9, no. 11, pp. 1170–1175.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Gebeshuber, C.A. and Martinez, J., MiR-100 suppresses IGF2 and inhibits breast tumorigenesis by interfering with proliferation and survival signaling, Oncogene, 2013, vol. 32, no. 27, pp. 3306–3310.

    Article  CAS  PubMed  Google Scholar 

  68. Sun, J., Chen, Z., Tan, X., et al., MicroRNA-99a/100 promotes apoptosis by targeting mTOR in human esophageal squamous cell carcinoma, Med. Oncol., 2013, vol. 1, p. 411.

    Article  Google Scholar 

  69. Chakrabarti, M., Banik, N.L., and Ray, S.K., Photofrin based photodynamic therapy and miR-99a transfection inhibited FGFR3 and PI3K/Akt signaling mechanisms to control growth of human glioblastoma in vitro and in vivo, PLoS One, 2013, vol. 8, no. 2. p. e55652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Chen, Z., Jin, Y., Yu, D., et al., Down-regulation of the microRNA-99 family members in head and neck squamous cell carcinoma, Oral Oncol., 2012, vol. 48, no. 8, pp. 686–691.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Tarasov.

Additional information

Original Russian Text © V.A. Tarasov, D.G. Matishov, E.F. Shin, N.V. Boyko, N.N. Timoshkina, M.A. Makhotkin, A.M. Lomonosov, A.A. Kirpiy, 2014, published in Genetika, 2014, Vol. 50, No. 8, pp. 909–917.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasov, V.A., Matishov, D.G., Shin, E.F. et al. Inheritable changes in miRNAs expression in HeLa cells after X-ray and mitomycin C treatment. Russ J Genet 50, 798–806 (2014). https://doi.org/10.1134/S1022795414080092

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795414080092

Keywords

Navigation