Skip to main content
Log in

Molecular-phylogenetic analysis of cyclopoids (Copepoda: Cyclopoida) from Lake Baikal and its water catchment basin

  • Animal Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Baikalian cyclopoids represent one of the richest endemic faunas of freshwater cyclopoid copepods. The genus Diacyclops Kiefer, 1927 is the most numerous by species number in the lake. In this work, molecular-phylogenetic analysis of 14 species and 1 sub-species from Lake Baikal and its water catchment basin is performed. The regions of mitochondrial cytochrom-oxydase I (COI) and of nuclear small-subunit 18S rRNA were used as evolution markers. In the obtained set of COI gene sequences, an effect of synonymous substitution saturation is revealed. Baikalian representatives of the genus Diacyclops form at phylogenetic schemes by two markers a monophyletic group, it suggest their origin from a common ancestral form. Preliminary estimate of this group age is 20–25 My.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mazepova, G.F., Cyclops (Cyclopoida), in Annotirovannyi spisok fauny ozera Baikal i ego vodosbornogo basseina v 2 tomakh (Annotated Fauna of the Baikal Lake and Its Catchment Area in 2 Volumes), Timoshkin, O.A. Ed., Novosibirsk: Nauka, 2001, vol. 1, pp. 451–467.

    Google Scholar 

  2. Timoshkin, O.A., Baikal Lake: Fauna Diversity, Problems of Its Immiscibility and Origin, Ecology and “Exotic” Communities, in Annotirovannyi spisok fauny ozera Baikal i ego vodosbornogo basseina v 2 tomakh (Annotated Fauna of the Baikal Lake and Its Catchment Area in 2 Volumes), Timoshkin, O.A. Ed., Novosibirsk: Nauka, 2001, vol. 1, pp. 16–74.

    Google Scholar 

  3. Sheveleva, N.G. and Pen’kova, O.G., Zooplankton of the Southern Part of the Maloe More Strait (Baikal Lake), Biol. Vnutrennikh Vod, 2005, no. 4, pp. 42–49.

  4. Mazepova, G.F., Tsiklopy ozera Baikal (Cyclops of the Baikal Lake), in Trudy Limnologicheskogo instituta (Transactions of the Limnology Institute), Novosibirsk: Nauka, 1978.

    Google Scholar 

  5. Dussart, B. and Deffae, D., World Directory of Crustacea Copepoda of Inland Waters: II. Cyclopiformes, Leiden: Backuys, 2006.

    Google Scholar 

  6. Folmer, O., Black, M., Hoen, W., et al., DNA Primers for Amplification of Mitochondrial Cytochrome c Oxidase Subunit I from Diverse Metazoan Invertebrates, Mol. Mar. Biotechnol., 1994, vol. 3, pp. 294–299.

    CAS  Google Scholar 

  7. Huys, R. Llewelin-Hughes, J., and Olson, D., et al., Small Subunit rDNA and Bayesian Inference Reveal Pectenophilus ornatus (Copepoda incertae sedis) as Highly Transformed Mytilicolidae, and Support Assignment of Chondracanthidae and Xarifiidae to Lichomolgoidea (Cyclopoida), Biol. J. Linnean Soc., 2006, vol. 87, pp. 403–425.

    Article  Google Scholar 

  8. Kozhov, M.M., Biologiya ozera Baikal (Biology of the Baikal Lake), Moscow: Akad. Nauk SSSR, 1962.

    Google Scholar 

  9. Lee, S.Y. and Rasheed, S., A Simple Procedure for Maximum Yield of High-Quality Plasmid DNA, Bio-Techniques, 1990, vol. 6, pp. 676–679.

    Google Scholar 

  10. Kumar, S., Tamura, K., and Jakobsen, I.B., et al., MEGA2: Molecular Evolutionary Genetics Analysis Software, Bioinformatics, 2001, vol. 17, no. 12, pp. 1244–1245.

    Article  CAS  PubMed  Google Scholar 

  11. Rozas, J., Sanches-DelBarrio, J.C., Messeguer, X., and Rozas, R., DnaSP, DNA Polymorphism Analyses by the Coalescent and Other Methods, Bioinformatics, 2003, vol. 19, no. 18, pp. 2496–2497.

    Article  CAS  PubMed  Google Scholar 

  12. Guindon, S., Lethiec, S., Duroux, P., et al., PHYML Online—a Web Server for Fast Maximum Likelihood-Based Phylogenetic Inference, Nucleic Acids Res., 2005, vol. 33, p. W557–W559.

    Article  CAS  PubMed  Google Scholar 

  13. Ronquist, F. and Huelsenbeck, J.P., MRBAYES 3: Bayesian Phylogenetic Inference under Mixed Models, Bioinformatics, 2003, vol. 19, pp. 1572–1574.

    Article  CAS  PubMed  Google Scholar 

  14. Schubart, C.D., Diesel, R., and Hedges, B., Rapid Evolution to Terrestrial Life in Jamaican Crabs, Nature, 1998, vol. 393, pp. 363–365.

    Article  CAS  Google Scholar 

  15. Knowlton, N. and Weight, L.A., New Dates and New Rates for Divergence across the Isthmus of Panama, Proc. R. Soc. London, 1998, vol. 265, pp. 2257–2263.

    Article  Google Scholar 

  16. Gaunt, M.W. and Miles, M.A., An Insect Molecular Clock Dates the Origin of the Insects and Accords with Palaeontological and Biogeographic Landmarks, Mol. Biol. Evol., 2002, vol. 19, no. 5, pp. 748–761.

    CAS  PubMed  Google Scholar 

  17. Lee, C.E., Global Phylogeography of a Cryptic Copepod Species Complex and Reproductive Isolation between Genetically Proximate “Populations”, Evolution, 2000, vol. 54, pp. 2014–2027.

    Article  CAS  PubMed  Google Scholar 

  18. Goetze, E., Cryptic Speciation on the High Seas; Global Phylogenetics of the Copepod Family Eucalanidae, Proc. R. Soc. London, 2003, vol. 270, pp. 2321–2331.

    Article  Google Scholar 

  19. Roe, A.D. and Sperling, F.A.H., Patterns of Evolution of Mitochondrial Cytochrome c Oxidase I and II DNA and Implications for DNA Barcoding, Mol. Phylogenet. Evol., 2006, vol. 44, pp. 325–345.

    Article  PubMed  Google Scholar 

  20. Lefebure, T., Douady, C.J., Gouy, M., and Gibert, J., Relationship between Morphological Taxonomy and Molecular Divergence within Crustacea: Proposal of a Molecular Threshold to Help Species Delimitation, Mol. Phylogenet. Evol., 2006, vol. 40, pp. 435–447.

    Article  CAS  PubMed  Google Scholar 

  21. Karanovic, T., Two New Genera and Three New Species of Subterranean Cyclopoids (Crustacea, Copepoda) from New Zealand, with Redescription of Goniocyclops silvestris Harding, 1958, Contrib. Zool., 2005, vol. 74, nos. 3–4, pp. 223–254.

    Google Scholar 

  22. Monchenko, V.I., Cryptic Species in Diacyclops bicuspidatus (Copepoda: Cyclopoida): Evidence from Crossbreeding Studies, Hydrobiologia, 2000, vol. 417, no. 1, pp. 101–107.

    Article  Google Scholar 

  23. Gressey, R. and Patterson, C., Fossil Parasitic Copepods from a Lower Cretaceous Fish, Science, 1973, vol. 180, pp. 1283–1285.

    Article  Google Scholar 

  24. Huys, R. and Boxshall, G.A., Copepod Evolution, London: Ray Society, 1991.

    Google Scholar 

  25. Palmer, A.R., Miocene Copepods from the Mojave Desert, California, J. Paleontol., 1960, vol. 34, no. 3, pp. 447–452.

    Google Scholar 

  26. Boxshall, G.A. and Jaume, D., Making Waves: The Repeated Colonization of Fresh Water by Copepod Crustaceans, Adv. Ecol. Res., 2000, vol. 31, pp. 61–79.

    Article  Google Scholar 

  27. River, I.K., Lazareva, V.I., and Gusakov, V.A., Mesofauna of the Upper Volga Water Storage Basins (1953–2001), in Ekologicheskie problemy Verkhnei Volgi (Ecological Problems of the Upper Volga), Yaroslavl, 2001, pp. 409–412.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yu. Mayor.

Additional information

Published in Russian in Genetika, 2010, Vol. 46, No. 11, pp. 1556–1564.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayor, T.Y., Sheveleva, N.G., Sukhanova, L.V. et al. Molecular-phylogenetic analysis of cyclopoids (Copepoda: Cyclopoida) from Lake Baikal and its water catchment basin. Russ J Genet 46, 1373–1380 (2010). https://doi.org/10.1134/S102279541011013X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279541011013X

Keywords

Navigation