Skip to main content
Log in

Possible involvement of DNA breaks in epigenetic regulation of cell differentiation

  • Theoretical Papers and Reviews
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The review summarizes the authors’ and literature data on accumulation of DNA breaks in differentiating cells. Large 50-kb free DNA fragments were observed by several research teams in non-apoptotic insect, mammal, and plant cells. More intense DNA breakage was observed during maturation of spermatides, embryo development, and differentiation of myotubes, epidermal cells, lymphocytes, and neutrophils. In general, accumulation of DNA breaks in differentiating cells cannot be attributed to a decrease in the DNA repair efficiency. Poly(ADP)ribose synthesis often follows the DNA breakage in differentiating cells. We hypothesize that DNA fragmentation is an epigenetic tool for regulating the differentiation process. Scarce data on localization of the differentiation-associated DNA breaks indicate their preferable accumulation in specific DNA sequences including the nuclear matrix attachment sites. The same sites are degraded at early stages of apoptosis. Recent data on non-apoptotic function of caspases provide more evidence for possible existence of a DNA breakage mechanism in differentiating cells, resembling the initial stage of apoptosis. Excision of methylated cytosine and recombination are other possible explanations of the phenomenon. Elucidation of mechanisms of differentiation-induced DNA breaks appears to be a prospective research direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lewin, B., Genes VII, Upper Saddle River, Engelwood Cliffs: Pearson Prentice Hall, 2004.

    Google Scholar 

  2. Sjakste, N.I., Role of DNA Breaks in the Regulation of Cell Proliferation, Differentiation and Aging, Ontogenez, 1987, vol. 18, pp. 229–238.

    CAS  Google Scholar 

  3. Sjakste, N.I., Molecular Organization of the Nuclear Cell Components during Different Phases of Mitotic Cycle and during Quiescent State, Tsitologiya, 1992, vol. 34, pp. 3–16.

    CAS  Google Scholar 

  4. Sjakste, N.I., Structural Changes of Chromatin during Differentiation of Erythroid Cells, Tsitol. Genet., 1993, vol. 27, pp. 89–96.

    Google Scholar 

  5. Sjakste, N.I., Changes of Macromolecular Composition and Organization of Cell Nucleus during Gameto-, Embryo-and Histogenesis, Ontogenez, 1993, vol. 24, pp. 5–21.

    PubMed  CAS  Google Scholar 

  6. Sjakste, N.I. and Sjakste, T.G., Specific Features of Molecular Organization of Leukocyte Cell Nucleus Determined by the Level of Its Differentiation, Vestn. Ross. Akad. Med. Nauk, 1993, vol. 4, pp. 56–63.

    PubMed  Google Scholar 

  7. Sjakste, N.I., Budylin, A.V., and Sjakste, T.G., Disconnection of DNA Domains in Quiescent and Differentiating Cells, in Nuclear Structure and Function, New York: Plenum, 1990, pp. 365–369.

    Google Scholar 

  8. Sjakste, T.G. and Sjakste, N.I., Molecular Organization of the Cell Nucleus in Higher Plants and Its Change in Ontogeny, Tsitologiya, 1993, vol. 34, pp. 3–16.

    Google Scholar 

  9. Sjakste, T., Sjakste, N., and Rashal, I., DNA Interactions with Nuclear Matrix Proteins in Higher Plant Cells: Applications of the Nucleoprotein Celite Chromatography Method, Proc. Latv. Acad. Sci. B, 1995, vol. 49, pp. 97–104.

    Google Scholar 

  10. Sjakste, N.I. and Budylin, A.V., Structural Rearrangements of Chromatin at Different Levels of Organization during Aging, Ontogenez, 1992, vol. 22, pp. 34–45.

    Google Scholar 

  11. Sjakste, H.I. and Sjakste, T.G., Role of DNA Breaks in Pathological Processes, Vopr. Med. Khim., 1988, vol. 4, pp. 9–17.

    Google Scholar 

  12. Sjakste, H.I. and Sjakste, T.G., Specific Interactions of Carcinogenic and Cytostatic Agents with Genome Elements at Different Levels of Its Organization, Eksp. Onkol., 1988, vol. 10, pp. 3–8.

    CAS  Google Scholar 

  13. Sjakste, N.I., Chromatin Structure and Nuclear Matrix Changes during Carcinogenic Cell Transformation and Antitumor Therapy, Eksp. Onkol., 1992, vol. 14, pp. 19–23.

    Google Scholar 

  14. Sjakste, N.I., Chromatin Structure and Nuclear Matrix Modification during Pathological Processes: Pharmacologic Correction Capability, Vopr. Med. Khim., 1993, vol. 39, pp. 10–15.

    Google Scholar 

  15. Sjakste, T.G. and Sjakste, N.I., Khimicheskie soedineniya, povrezhdayushchie DNK (Chemical Compounds Damaging DNA), Riga: Zinatne, 1991, p. 152.

    Google Scholar 

  16. Liu, Q.Y., Ribecco-Lutkiewicz, M., Carson, C., et al., Mapping the Initial DNA Breaks in Apoptotic Jurkat Cells Using Ligation-Mediated PCR, Cell Death Differ., 2003, vol. 10, pp. 278–289.

    Article  PubMed  CAS  Google Scholar 

  17. De La Roche and Saint-Andre, C., Tails and Cuts: the Role of Histone Post-Translational Modifications in the Formation of Programmed Double-Strand Breaks, Biochimie, 2005, vol. 87, pp. 603–612.

    Article  CAS  Google Scholar 

  18. Bartkova, J., Bakkenist, C.J., Rajpert-De Meyts, E., et al., ATM Activation in Normal Human Tissues and Testicular Cancer, Cell Cycle, 2005, vol. 4.

  19. Marnett, L.J. and Plastaras, J.P., Endogenous DNA Damage and Mutation, Trends Genet., 2001, vol. 17, pp. 214–221.

    Article  PubMed  CAS  Google Scholar 

  20. Eastman, A. and Barry, M.A., The Origins of DNA Breaks: A Consequence of DNA Damage, DNA Repair, or Apoptosis, Cancer Inves., 1992, vol. 10, pp. 229–240.

    CAS  Google Scholar 

  21. Szabo, G., Jr., 50-kb Chromatin Fragmentation in the Absence of Apoptosis, Exp. Cell Res., 1995, vol. 221, pp. 320–325.

    Article  PubMed  CAS  Google Scholar 

  22. Struchkov, V.A., Strazhevskaya, N.B., and Zhdanov R.I., Specific Natural DNA-Bound Lipids in Post-Genome Era: The Lipid Conception of chromatin Organization, Bioelectrochemistry, 2002, vol. 56, pp. 195–198.

    Article  PubMed  CAS  Google Scholar 

  23. Solov’yan, V.T., Andreev, I.O., Kolotova, T.Y., et al., The Cleavage of Nuclear DNA into High Molecular Weight DNA Fragments Occurs Not Only during Apoptosis but Also Accompanies Changes in Functional Activity of the Nonapoptotic Cells, Exp. Cell Res., 1997, vol. 235 P, pp. 130–137.

    Article  Google Scholar 

  24. Tchurikov, N.A. and Ponomarenko, N.A., Detection of DNA Domains in Drosophila, Human, and Plant Chromosomes Possessing Mainly 50-to 150-kb Stretches of DNA, Proc. Natl. Acad. Sci. USA, 1992, vol. 89, pp. 6751–6755.

    Article  PubMed  CAS  Google Scholar 

  25. Tchurikov, N.A., Krasnov, A.N., Ponomarenko, N.A., et al., Forum Domain in Drosophila melanogasteri cut a Locus Possesses Looped Domains Inside, Nucleic Acids Res., 1998, vol. 26, pp. 3221–3227.

    Article  PubMed  CAS  Google Scholar 

  26. Tchurikov, N.A., Kretova, O.V., Chernov, B.K., et al., SuUR Protein Binds to the Boundary Regions Separating Forum Domains in Drosophila melanogasteri, J. Biol. Chem., 2004, vol. 279, pp. 11 705–11 710.

    Article  CAS  Google Scholar 

  27. Varga, T., Szilagyi, I., and Szabo, G., Single-Strand Breaks in Agarose-Embedded Chromatin of Nonapoptotic Cells, Biochem. Biophys. Res. Commun., 1999, vol. 264, pp. 388–394.

    Article  PubMed  CAS  Google Scholar 

  28. Gal, I., Varga, T., Szilagyi, I., et al., Protease-Elicited TUNEL Positivity of Non-Apoptotic Fixed Cells, J. Histochem. Cytochem., 2000, vol. 48, pp. 963–970.

    PubMed  CAS  Google Scholar 

  29. Sjakste, N., Size Distribution of Megabase Double-Strand Fragments in Xenopus laevis Erythrocyte DNA, Proc. Latv. Acad. Sci. B, 1997, vol. 51, pp. 64–71.

    CAS  Google Scholar 

  30. Van Gent, D.C., Hoeijmakers, J.H., and Kanaar, R., Chromosomal Stability and the DNA Double-Stranded Break Connection, Nat. Rev. Genet., 2001, vol. 2, pp. 196–206.

    Article  PubMed  Google Scholar 

  31. Baus, F., Gire, V., Fisher, D., et al., Permanent Cell Cycle Exit in G2 Phase after DNA Damage in Normal Human Fibroblasts, EMBO J., 2003, vol. 22, pp. 3992–4002.

    Article  PubMed  CAS  Google Scholar 

  32. Joshi, D.S., Yick, J., Murray, D., and Meistrich, M.L., Stage-Dependent Variation in the Radiosensitivity of DNA in Developing Male Germ Cells, Radiat. Res., 1990, vol. 121, pp. 274–281.

    Article  PubMed  CAS  Google Scholar 

  33. Iseki, S., DNA Strand Breaks in Rat Tissues as Detected by in Situ Nick Translation, Exp. Cell Res., 1986, vol. 167, pp. 311–326.

    Article  PubMed  CAS  Google Scholar 

  34. Marcon, L. and Boissonneault, G., Transient DNA Strand Breaks during Mouse and Human Spermiogenesis: New Insights in Stage Specificity and Link to Chromatin Remodeling, Biol. Reprod., 2004, vol. 70, pp. 910–918.

    Article  PubMed  CAS  Google Scholar 

  35. Meyer-Ficca, M.L., Scherthan, H., Burkle, A., and Meyer, R.G., Poly(ADP)-ribosylation during Chromatin Remodeling Steps in Rat Spermiogenesis, Chromosoma, 2005, vol. 114, pp. 67–74.

    Article  PubMed  CAS  Google Scholar 

  36. Wortzman, M.S. and Baker, R.F., Two Classes of Single-Stranded Regions in DNA from Sea Urchin Embryos, Science, 1981, vol. 211, pp. 588–590.

    Article  PubMed  CAS  Google Scholar 

  37. Kotlyar, E.Yu., Belova, M.M., Abramova, Z.I., et al., DNase Participation in Embryonic Development of Loach and Sea Urchin, Tsitologiya, 1989, vol. 31, pp. 1108–1109.

    Google Scholar 

  38. Popov, L.S., Single-Stranded Structures in DNA of Viruses, Bacteria and Higher Organisms, Usp. Sovrem. Biol., 1989, vol. 107, pp. 3–19.

    CAS  Google Scholar 

  39. Zaraiskii, A.G., Luk’yanov, S.A., and Ermakova, G.V., Temporal Spatial Distribution of Single-Type DNA Breaks in the Nuclear DNA in Xenopus Embryo Preparations during Gastrulation and Neurulation, Ontogenez, 1989, vol. 20, pp. 471–477.

    PubMed  CAS  Google Scholar 

  40. Patkin, E.L., Kustova, M.E., and Noniashvili, E.M., DNA-Strand Breaks in Chromosomes of Early Mouse Embryos as Detected by in Situ Nick Translation and Gap Filling, Genome, 1995, vol. 38, pp. 381–384.

    PubMed  CAS  Google Scholar 

  41. Kislyakova, T.V., Kustova, M.E., Lyanguzova, M.S., et al., Noninduced DNA Breaks in Cells of Mouse Teratocarcinoma F9, Tsitologiya, 2000, vol. 42, pp. 1060–1068.

    CAS  Google Scholar 

  42. Vatolin, S.Y., Okhapkina, E.V., Matveeva, N.M., et al., Scheduled Perturbation in DNA during in Vitro Differentiation of Mouse Embryo-Derived Cells, Mol. Reprod. Dev., 1997, vol. 47, pp. 1–10.

    Article  PubMed  CAS  Google Scholar 

  43. Ivanov, V.A. and Tumshalova, N.A., DNA Synthesis and the Higher Brain Functions, Usp. Sovrem. Biol., 1988, vol. 106, pp. 163–178.

    CAS  Google Scholar 

  44. Mullaart, E., Boerrigter, M.E., Boer, G.J., and Vijg, J., Spontaneous DNA Breaks in the Rat Brain during Development and Aging, Mutat. Res., 1990, vol. 237, pp. 9–15.

    PubMed  CAS  Google Scholar 

  45. Patkin, E.L., Vaido, A.I., Kustova, M.E., et al., Single-Type DNA Breaks in the Rat Brain Cells of Different Lines in Normal Conditions and under Stress, Tsitologiya, 2001, vol. 43, pp. 269–273.

    CAS  Google Scholar 

  46. Gilmore, E.C., Nowakowski, R.S., Caviness, V.S., and Herrup, K., Cell Birth, Cell Death, Cell Diversity and DNA Breaks: How Do They All Fit Together?, Trends Neurosci., 2000, vol. 23, pp. 100–105.

    Article  PubMed  CAS  Google Scholar 

  47. Farzaneh, F., Shall, S., and Johnstone, A.P., The Dynamic Nature of DNA-Strand Breaks Present in Differentiating Muscle Cells and Quiescent Lymphocytes, FEBS Letts., 1985, vol. 189, pp. 62–66.

    Article  CAS  Google Scholar 

  48. Dawson, B.A. and Lough, J., Immunocytochemical Localization of Transient DNA Strand Breaks in Differentiating Myotubes Using in Situ Nick-Translation, Dev. Biol., 1988, vol. 127, pp. 362–367.

    Article  PubMed  CAS  Google Scholar 

  49. Coulton, G.R., Rogers, B., Strutt, P., et al., In Situ Localisation of Single-Stranded DNA Breaks in Nuclei of a Subpopulation of Cells within Regenerating Skeletal Muscle of the Dystrophic Mdx Mouse, J. Cell Sci., 1992, vol. 102, pp. 653–662.

    PubMed  CAS  Google Scholar 

  50. Shiokawa, D., Kobayashi, T., and Tanuma, S., Involvement of DNase Gamma in Apoptosis Associated with Myogenic Differentiation of C2C12 Cells, J. Biol. Chem., 2002, vol. 277, pp. 31 031–31 037.

    Article  CAS  Google Scholar 

  51. Latella, L., Lukas, J., Simone, C., et al., Differentiation-Induced Radioresistance in Muscle Cells, Mol. Cell Biol, 2004, vol. 24, pp. 6350–6361.

    Article  PubMed  CAS  Google Scholar 

  52. Puri, P.L., Bhakta, K., Wood, L.D., et al., A Myogenic Differentiation Checkpoint Activated by Genotoxic Stress, Nat. Genet., 2002, vol. 32, pp. 585–593.

    Article  PubMed  CAS  Google Scholar 

  53. Hossain, M.S., Kurokawa, K., and Sekimizu, K., Induction of Fusion-Competent Myoblast-Specific Gene Expression during Myogenic Differentiation of Drosophila Schneider Cells by DNA Double-Strand Breaks or Replication Inhibition, Biochim. Biophys. Acta, 2005, vol. 1743, pp. 176–186.

    Article  PubMed  CAS  Google Scholar 

  54. Arshavskaya, T.V., Zirne, R.A., Sjakste, N.I., et al., Characteristic of Virus Transformed SV-40 Fibroblasts of Dwarf Hamster Line 4/21, Latv. PSR Zinat. Akad. Vestis., 1989, vol. 7, pp. 72–77.

    Google Scholar 

  55. Sjakste, N.I. and Budylin, A.V., Accumulation of Breaks in Coding DNA Region of Quiescent and Starving Cells, Biopolim. Kletka, 1990, vol. 6, pp. 91–95.

    CAS  Google Scholar 

  56. Sjakste, N.I. and Sjakste, T.G., Deallocation of DNA from Nuclear Matrix in Transited into the Quescent State Transformed Fibroblasts of Dwarf Hamster, Biopolim. Kletka, 1986, vol. 2, pp. 50–52.

    CAS  Google Scholar 

  57. Sjakste, N.I., Sjakste, T.G., and Zaleskaya, N.D., Reversible Accumulation of Double-and Single-Strand Breaks during the Transition of Cells into the Resting State, Bull. Exp. Biol., Med., Engl. Tr., 1986, vol. 102, pp. 1059–1061.

    Article  Google Scholar 

  58. Scher, W. and Friend, C., Breakage of DNA and Alterations in Folded Genomes by Inducers of Differentiation in FRIEND Erythroleukemic Cells, Cancer Res., 1978, vol. 38, pp. 841–849.

    PubMed  CAS  Google Scholar 

  59. Terada, M., Nudel, U., Fibach, E., et al., Changes in DNA Associated with Induction of Erythroid Differentiation by Dimethyl Sulfoxide in Murine Erythroleukemia Cells, Cancer Res., 1978, vol. 38, pp. 835–840.

    PubMed  CAS  Google Scholar 

  60. Pulito, V.L., Miller, D.L., Sassa, S., and Yamane, T., DNA Fragments in FRIEND Erythroleukemia Cells Induced by Dimethyl Sulfoxide, Proc. Natl. Acad. Sci. USA, 1983, vol. 80, pp. 5912–5915.

    Article  PubMed  CAS  Google Scholar 

  61. Pulito, V.L., Miller, D.L., Sassa, S., and Yamane, T., ADP-Ribosyltransferase Activity during the FRIEND Virus-Induced Murine Erythroleukemia Cell Differentiation, J. Biol. Chem., 1983, vol. 258, pp. 14 756–14 758.

    CAS  Google Scholar 

  62. Sugiura, M., Fram, R., Munroe, D., and Kufe, D., DNA Strand Scission and ADP-Ribosyltransferase Activity during Murine Erythroleukemia Cell Differentiation, Dev. Biol., 1984, vol. 104, pp. 484–488.

    Article  PubMed  CAS  Google Scholar 

  63. Reboulleau, C.P., Williams, J., Randolph, V.A., and Shapiro, H.S., Maintenance of DNA Integrity during Murine Erythroleukemia Cell Differentiation Induced by Ethionine and Other Hypomethylation Agents, Biochim. Biophys. Acta, 1983, vol. 740, pp. 145–151.

    PubMed  CAS  Google Scholar 

  64. Tabocchini, M.A., Rothkamm, K., Signoretti, C., et al., Formation and Repair of DNA Double-Strand Breaks in Gamma-Irradiated K562 Cells Undergoing Erythroid Differentiation, Mutat. Res., 2000, vol. 461, pp. 71–82.

    PubMed  CAS  Google Scholar 

  65. Johnstone, A.P. and Williams, G.T., Role of DNA Breaks and ADP-Ribosyl Transferase Activity in Eukaryotic Differentiation Demonstrated in Human Lymphocytes, Nature, 1982, vol. 300, pp. 368–370.

    Article  PubMed  CAS  Google Scholar 

  66. Kaplan, J.G., Brown, D.L., Chaly, N., et al., Structural and Evolutionary Implications of the Packaging of DNA for Differentiation and Proliferation in the Lymphocyte, J. Mol. Evol., 1987, vol. 26, pp. 173–179.

    Article  PubMed  CAS  Google Scholar 

  67. Greer, W.L. and Kaplan, J.G., DNA Strand Breaks in Murine Lymphocytes: Induction by Purine and Pyrimidineanalogues, Biochem. Biophys. Res. Commun., 1983, vol. 115, pp. 834–840.

    Article  PubMed  CAS  Google Scholar 

  68. Greer, W.L. and Kaplan, J.G., Early Nuclear Events in Lymphocyte Proliferation: The Role of DNA Strand Break Repair and ADP Ribosylation, Exp. Cell Res., 1986, vol. 166, pp. 399–415.

    Article  PubMed  CAS  Google Scholar 

  69. Greer, W.L. and Kaplan, J.G., Regulation of Repair of Naturally Occurring DNA Strand Breaks in Lymphocytes, Biochem. Biophys. Res. Commun., 1984, vol. 122, pp. 366–372.

    Article  PubMed  CAS  Google Scholar 

  70. Prasad, K.V., Greer, W.L., Severini, A., and Kaplan, J.G., Increase in Intracellular Na+: Transmembrane Signal for Rejoining of DNA Strand Breaks in Proliferating Lymphocytes, Cancer Res., 1987, vol. 47, pp. 5397–5400.

    PubMed  CAS  Google Scholar 

  71. Szabo, G.Jr. and Bacso, Z., Chromatin Isolated from Viable Human PBLs Contains DNA Fragmented to >50 kb, Cell Death Differ., 1996, vol. 3, pp. 237–241.

    PubMed  CAS  Google Scholar 

  72. Feon, S.A., Valerius, R.M., Genetet, N.M., et al., DNA Ligation in Relation to DNA Strand Breaks in Phytohemagglutinin-Stimulated Blast Cells from Acute Lymphoblastic and Nonlymphoblastic Leukemia, Blood, 1988, vol. 72, pp. 648–654.

    PubMed  CAS  Google Scholar 

  73. Rusquet, R.M., Feon, S.A., and David, J.C., Association of a Possible DNA Ligase Deficiency with T-Cell Acute Leukemia, Cancer Res., 1988, vol. 48, pp. 4038–4044.

    PubMed  CAS  Google Scholar 

  74. Boerrigter, M.E., Mullaart, E., van der Schans, G.P., and Vijg, J., Quiescent Human Peripheral Blood Lymphocytes Do Not Contain a Sizable Amount of Preexistent DNA Single-Strand Breaks, Exp. Cell Res., 1989, vol. 180, pp. 569–573.

    Article  PubMed  CAS  Google Scholar 

  75. Jostes, R., Reese, J.A., Cleaver, J.E., et al., Quiescent Human Lymphocytes Do Not Contain DNA Strand Breaks Detectable by Alkaline Elution, Exp. Cell Res., 1989, vol. 182, pp. 513–520.

    Article  PubMed  CAS  Google Scholar 

  76. Moskaleva, E.Yu., Influence of Lymphokines on DNA Structure of Human Lymphocytes Cultivated in Vitro: Relation with Systems cAMP and Oligoadenilatsynthase, Byul. Eksp. Biol. Med, 1990, vol. 110, pp. 417–419.

    CAS  Google Scholar 

  77. Moskaleva, E.Yu., Analysis of Secondary DNA Structure during Lymphocytes Activation by Means of Mitoges, Byul. Eksp. Biol. Med., 1989, vol. 108, pp. 335–337.

    CAS  Google Scholar 

  78. Moskaleva, E.Yu. and Grozdova, I.D., cAMP Content, Proteinkinase Activity and DNA Structure in Human Quiescent and Proliferating Lymphocytes of Peripheral Blood and in T-Lymphocytes, Vopr. Med. Khim., 1991, vol. 37, pp. 62–64.

    PubMed  Google Scholar 

  79. Moskaleva, E.Yu., D’yachenko, L.V., Mironov, S.V., and Fedorov, N.A., Study of DNA Structure of Peripheral Leukocytes, Proliferating Lymphocytes and Tumor Cells Inferred from the Data on the Rate of DNA Lysate Alkaline Denaturation, Gematol. Transfuziol., 1989, vol. 34, pp. 40–42.

    PubMed  Google Scholar 

  80. Holz, O., Jorres, R., Kastner, A., and Magnussen, H., Differences in Basal and Induced DNA Single-Strand Breaks between Human Peripheral Monocytes and Lymphocytes, Mutat. Res., 1995, vol. 332, pp. 55–62.

    PubMed  CAS  Google Scholar 

  81. Maizels, N., Immunoglobulin Gene Diversification, Ann. Rev. Genet., 2005, vol. 39, pp. 23–46.

    Article  PubMed  CAS  Google Scholar 

  82. Francis, G.E., Ho, A.D., Gray, D.A., et al., DNA Strand Breakage and ADP-Ribosyl Transferase Mediated DNA Ligation during Stimulation of Human Bone Marrow Cells by Granulocyte-Macrophage Colony Stimulating Activity, Leuk. Res., 1984, vol. 8, pp. 407–415.

    Article  PubMed  CAS  Google Scholar 

  83. Khan, Z. and Francis, G.E., Contrasting Patterns of DNA Strand Breakage and ADP-Ribosylation-Dependent DNA Ligation during Granulocyte and Monocyte Differentiation, Blood, 1987, vol. 69, pp. 1114–1119.

    PubMed  CAS  Google Scholar 

  84. Farzaneh, F., Meldrum, R., and Shall, S., Transient Formation of DNA Strand Breaks during the Induced Differentiation of a Human Promyelocytic Leukaemic Cell Line, HL-60, Nucleic Acids Res., 1987, vol. 15, pp. 3493–3502.

    Article  PubMed  CAS  Google Scholar 

  85. Shima, H., Nakayasu, M., Aonuma, S., et al., Loss of the MYC Gene Amplified in Human HL-60 Cells after Treatment with Inhibitors of Poly(ADP-Ribose) Polymerase or with Dimethyl Sulfoxide, Proc. Natl. Acad. Sci. USA, 1989, vol. 86, pp. 7442–7445.

    Article  PubMed  CAS  Google Scholar 

  86. Weisinger, G., Korn, A.P., and Sachs, L., Protein That Induces Cell Differentiation Causes Nicks in Double-Stranded DNA, FEBS Letts., 1986, vol. 200, pp. 107–110.

    Article  CAS  Google Scholar 

  87. Elias, L., Moore, P.B., and Rose, S.M., Tumor Necrosis Factor Induced DNA Fragmentation of HL-60 Cells, Biochem. Biophys. Res. Commun., 1988, vol. 157, pp. 963–969.

    Article  PubMed  CAS  Google Scholar 

  88. Chou, S., Kaneko, M., Nakaya, K., and Nakamura, Y., Induction of Differentiation of Human and Mouse Myeloid Leukemia Cells by Camptothecin, Biochem. Biophys. Res. Commun., 1990, vol. 166, pp. 160–167.

    Article  PubMed  CAS  Google Scholar 

  89. Perez, C., Volaboa, N.E., and Aller, P., Etoposide-Induced Differentiation of U937 Promonocytic Cells: AP-1-Dependent Gene Expression and Protein Kinase C Activation, Cell Growth Differentiation, 1994, vol. 5, pp. 949–955.

    PubMed  CAS  Google Scholar 

  90. Constantinou, A., Henning-Chubb, C., and Huberman, E., Novobiocin-and Phorbol-12-Myristate-13-Acetate-Induced Differentiation of Human Leukemia Cells Associated with a Reduction in Topoisomerase II Activity, Cancer Res., 1989, vol. 49, pp. 1110–1117.

    PubMed  CAS  Google Scholar 

  91. Sugimoto, K., Yamada, K., Egashira, M., et al., Temporal and Spatial Distribution of DNA Topoisomerase II Alters during Proliferation, Differentiation, and Apoptosis in HL-60 Cells, Blood, 1998, vol. 91, pp. 1407–1417.

    PubMed  CAS  Google Scholar 

  92. Sallmyr, A., Miller, A., Gabdoulkhakova, A., et al., Expression of DNA-Dependent Protein Kinase in Human Granulocytes, Cell Res., 2004, vol. 14, pp. 331–340.

    Article  PubMed  CAS  Google Scholar 

  93. Chou, S.F., Chen, H.L., and Lu, S.C., Up-Regulation of Human Deoxyribonuclease II Gene Expression during Myelomonocytic Differentiation of HL-60 and THP-1 Cells, Biochem. Biophys. Res. Commun., 2002, vol. 296, pp. 48–53.

    Article  PubMed  CAS  Google Scholar 

  94. Modak, S.P. and Traurig, H., Appearance of Strand Breaks in the Nuclear DNA of Terminally Differentiating Vaginal Epithelium, Cell Differ., 1972, vol. 1, pp. 351–355.

    Article  PubMed  CAS  Google Scholar 

  95. Hartley, J.A., Gibson, N.W., Zwelling, L.A., and Yuspa, S.H., Association of DNA Strand Breaks with Accelerated Terminal Differentiation in Mouse Epidermal Cells Exposed to Tumor Promoters, Cancer Res., 1985, vol. 45, pp. 4864–4870.

    PubMed  CAS  Google Scholar 

  96. Chen, S.G. and Srivastava, B.I., Fragmentation of DNA and Chromatin during Senescence in Barley Leaves, Mech. Ageing. Dev., 1986, vol. 34, pp. 57–61.

    Article  PubMed  CAS  Google Scholar 

  97. Li, Q.R., Liu, L.-H., and Liang, H.G., Changes in Ribosome Population and in Nucleic Acids during Breaking of Dormancy and Development of Buds, Physiol. Plant., 1989, vol. 77, pp. 531–536.

    Article  CAS  Google Scholar 

  98. Inagaki, S., Suzuki, T., Ohto, M.A., et al., Arabidopsis TEBICHI, with Helicase and DNA Polymerase Domains, Is Required for Regulated Cell Division and Differentiation in Meristems, Plant Cell, 2006, vol. 18, pp. 879–892.

    Article  PubMed  CAS  Google Scholar 

  99. Latchmann, D., Gene Regulation: A Eukaryotic Perspective, London: Chapmann and Hall, 1995.

    Google Scholar 

  100. De Maria, A. and Arruti, C., DNase I and Fragmented Chromatin during Nuclear Degradation in Adult Bovine Lens Fibers, Mol. Vis., 2004, vol. 10, pp. 74–82.

    PubMed  Google Scholar 

  101. Lieber, M.R., Warner-Lambert/Parke-Davis Award Lecture. Pathological and Physiological Double-Strand Breaks: Roles in Cancer, Aging, and the Immune System, Am. J. Pathol., 1998, vol. 153, pp. 1323–1332.

    PubMed  CAS  Google Scholar 

  102. Sollier, J., Lin, W., Soustelle, C., et al., Set1 Is Required for Meiotic S-Phase Onset, Double-Strand Break Formation and Middle Gene Expression, EMBO J., 2004, vol. 23, pp. 1957–1967.

    Article  PubMed  CAS  Google Scholar 

  103. Klein, F., Feldhahn, N., Mooster, J.L., et al., Tracing the Pre-B to Immature B Cell Transition in Human Leukemia Cells Reveals a Coordinated Sequence of Primary and Secondary IGK Gene Rearrangement, IGK Deletion, and IGL Gene Rearrangement, J. Immunol., 2005, vol. 174, pp. 367–375.

    PubMed  CAS  Google Scholar 

  104. Williams, G.T. and Johnstone, A.P., ADP-Ribosyl Transferase, Rearrangement of DNA, and Cell Differentiation, Biosci. Rep., 1983, vol. 3, pp. 815–830.

    Article  PubMed  CAS  Google Scholar 

  105. Patkin, E.L., Epigenetic Mechanisms for Primary Differentiation in Mammalian Embryos, Int. Rev. Cytol., 2002, vol. 216, pp. 81–129.

    Article  PubMed  CAS  Google Scholar 

  106. Bill, C.A., Grochan, B.M., Vrdoljak, E., and Mendoza, E., Decreased Repair of Radiation-Induced DNA Double-Strand Breaks with Cellular Differentiation, Radiat. Res., 1992, vol. 132, pp. 254–258.

    Article  PubMed  CAS  Google Scholar 

  107. Tofilon, P.J. and Meyn, R.E., Reduction in DNA Repair Capacity Following Differentiation of Murine Proadipocytes, Exp. Cell Res., 1988, vol. 174, pp. 502–510.

    Article  PubMed  CAS  Google Scholar 

  108. Shikazono, N., Watanabe, H., Tanaka, A., Tano, S., et al., Reduced Rejoining Ability of DNA Strand Breaks with Differentiation in Barley Root Cells, Mutat. Res., 1995, vol. 337, pp. 41–48.

    PubMed  CAS  Google Scholar 

  109. Brammer, I., Herskind, C., Haase, O., et al., Induction and Repair of Radiation-Induced DNA Double-Strand Breaks in Human Fibroblasts Are not Affected by Terminal Differentiation, DNA Repair, 2004, vol. 3, pp. 113–120.

    Article  PubMed  CAS  Google Scholar 

  110. Farzaneh, F., Feon, S., Lebby, R.A., et al., DNA Repair in Human Promyelocytic Cell Line, HL-60, Nucleic Acids Res., 1987, vol. 15, pp. 3503–3513.

    Article  PubMed  CAS  Google Scholar 

  111. Covacci, V., Torsello, A., Palozza, P., et al., DNA Oxidative Damage during Differentiation of HL-60 Human Promyelocytic Leukemia Cells, Chem. Res. Toxicol., 2001, vol. 14, pp. 1492–1497.

    Article  PubMed  CAS  Google Scholar 

  112. Shall, S., ADP-Ribosylation, DNA Repair, Cell Differentiation and Cancer, Princess Takamatsu Symp., 1983, vol. 13, pp. 3–25.

    PubMed  CAS  Google Scholar 

  113. Faraone-Mennella, M.R., Chromatin Architecture and Functions: The Role(s) of Poly(ADP-ribose)polymerase and Poly(ADPribosyl)ation of Nuclear Proteins, Biochem. Cell Biol., 2005, vol. 83, pp. 396–404.

    Article  PubMed  CAS  Google Scholar 

  114. Virag, L. and Szabo, C., The Therapeutic Potential of Poly(ADP-Ribose) polymerase Inhibitors, Pharmacol. Rev., 2002, vol. 54, pp. 375–429.

    Article  PubMed  CAS  Google Scholar 

  115. Burkle, A., Poly(ADP-ribose): The Most Elaborate Metabolite of NAD+, FEBS J., 2005, vol. 272, pp. 4576–4589.

    Article  PubMed  CAS  Google Scholar 

  116. Koh, D.W., Dawson, T.M., and Dawson, V.L., Mediation of Cell Death by Poly(ADP-ribose)polymerase-1, Pharmacol. Res., 2005, vol. 52, pp. 5–14.

    Article  PubMed  CAS  Google Scholar 

  117. Nicieza, R., Huergo, J., Connolly, B.A., and Sanchez, J., Purification, Characterization, and Role of Nucleases and Serine Proteases in Streptomyces Differentiation, J. Biol. Chem., 1999, vol. 274, pp. 20 366–20 375.

    Article  CAS  Google Scholar 

  118. Testa, U., Apoptotic Mechanisms in the Control of Erythropoiesis, Leukemia, 2004, vol. 18, pp. 1176–1199.

    Article  PubMed  CAS  Google Scholar 

  119. Leonard, W.J. and Spolski, R., Interleukin 21: A Modulator of Lymphoid Proliferation, Apoptosis and Differentiation, Nature Rev. Immunol., 2005, vol. 5, pp. 688–698.

    Article  CAS  Google Scholar 

  120. Kobayashi, S.D. and DeLeo, F.R., An Apoptosis Differentiation Programme in Human Polymorphonuclear Leucocytes, Biochem. Soc. Trans., 2004, vol. 32, pp. 474–476.

    Article  PubMed  CAS  Google Scholar 

  121. Kumar, S., Migrate, Differentiate, Proliferate, or Die: Pleiotropic Functions of an Apical “Apoptotic Caspase,” Sciences’s STKE, 2004, vol. 254, p. 49.

    Google Scholar 

  122. Launay, S., Hermine, O., Fontenay, M., et al., Vital Functions of Lethal Caspases, Oncogene, 2005, vol. 24, pp. 5137–5148.

    Article  PubMed  CAS  Google Scholar 

  123. Siegel, R.M., Caspases at the Crossroads of Immune-Cell Life and Death, Nat. Rev. Immunol., 2006, vol. 6, pp. 308–317.

    Article  PubMed  CAS  Google Scholar 

  124. Iarovaia, O., Razin, S.V., Linares-Cruz, G., et al., In Chicken Leukemia Cells Globin Genes Are Fully Transcribed but Their RNAs Are Retained in the Perinucleolar Area, Exp. Cell Res., 2001, vol. 270, pp. 159–165.

    Article  PubMed  CAS  Google Scholar 

  125. Sjakste, N. and Sjakste, T., Differences in Chromatin Domain Organization in Chicken Erythrocytes and Cultured Transformed Erythroblasts Induced to Differentiation Revealed by Nucleoprotein Celite Chromatography, Biologija, 2004, vol. 3, pp. 1–5.

    Google Scholar 

  126. Sjakste, N., Site-Specific Excision or Protection of an Alpha A Globin Gene Genomic Site in Apoptotic Transformed Chicken Erythroblasts, Cell Mol. Biol. Lett., 2004, vol. 9, pp. 429–437.

    PubMed  CAS  Google Scholar 

  127. Nagata, S., DNA Degradation in Development and Programmed Cell Death, Annu. Rev. Immunol., 2005, vol. 23, pp. 853–875.

    Article  PubMed  CAS  Google Scholar 

  128. Winter, D.B., Gearhart, P.J., and Bohr, V.A., Homogeneous Rate of Degradation of Nuclear DNA during Apoptosis, Nucleic Acids Res., 1998, vol. 26, pp. 4422–4425.

    Article  PubMed  CAS  Google Scholar 

  129. Vodenicharov, M.D., Markova, D.Z., and Djonjurov, L.P., Spontaneous Apoptosis in Mouse F4N-S Erythroleukemia Cells Induces a Non-Random Fragmentation of DNA, DNA Cell Biol., 1996, vol. 15, pp. 287–296.

    Article  PubMed  CAS  Google Scholar 

  130. Khodarev, N.N., Bennett, T., Shearing, N., et al., LINE L1 Retrotransposable Element is Targeted during the Initial Stages of Apoptotic DNA Fragmentation, J. Cell Biochem., 2000, vol. 79, pp. 486–495.

    Article  PubMed  CAS  Google Scholar 

  131. Sjakste, N.I. and Budylin, A.V., Changes of Secondary and Quartenary DNA Structure during Leucosis R388 Development, Izv. Akad. Nauk Latv. SSR, 1989, vol. 12, pp. 76–87.

    Google Scholar 

  132. Sjakste, N.I. and Budylin, A.V., DNA Breaks in Starving Cells of Ehrlich Ascites: Distribution in DNA Regions that Differ in Transcription Activity and Structural Complexity, Latv. PSR Zinat. Akad. Vestis., 1989, vol. 12, pp. 88–95.

    Google Scholar 

  133. Lichtensein, A.V., Melkonyan, H.S., Tomei, I.D., and Umansky, S.R., Circulating Nucleic Acids and Apoptosis, Ann. N. Y. Acad. Sci., 2001, pp. 239–249.

  134. Bezvenyuk, Z., Salminen, A., and Solovyan, V., Excision of DNA Loop Domains as a Common Step in Caspase-Dependent and-Independent Types of Neuronal Cell Death, Brain Res. Mol. Brain Res., 2001, vol. 81, pp. 191–196.

    Article  Google Scholar 

  135. Lagarkova, M.A., Iarovaia, O.V., and Razin, S.V., Large-Scale Fragmentation of Mammalian DNA in the Course of Apoptosis Proceeds via Excision of Chromosomal DNA Loops and Their Oligomers, J. Biol. Chem., 1995, vol. 270, pp. 20 239–20 241.

    CAS  Google Scholar 

  136. Solovyan, V.T., Bezvenyuk, Z.A., Salminen, A., et al., The Role of Topoisomerase II in the Excision of DNA Loop Domains during Apoptosis, J. Biol. Chem., 2002, vol. 277, pp. 21 458–21 467.

    Article  CAS  Google Scholar 

  137. Widlak P., DFF40/CAD Hypersensitive Sites are Potentially Involved in High Molecular Weight DNA Fragmentation during Apoptosis, Cell Mol. Biol. Letters., 2000, vol. 5, pp. 373–379.

    CAS  Google Scholar 

  138. Widlak, P., Li, P., Wang, X., and Garrard, W.T., Cleavage Preferences of the Apoptotic Endonuclease DFF40 (Caspase-Activated DNase or Nuclease) on Naked DNA and Chromatin Substrates, J. Biol. Chem., 2000, vol. 275, pp. 8226–8232.

    Article  PubMed  CAS  Google Scholar 

  139. Lei, J.X., Liu, Q.Y., Sodja, C., et al., S/MAR-Binding Properties of Sox2 and Its Involvement in Apoptosis of Human NT2 Neural Precursors, Cell Death Differ., 2005, vol. 12, pp. 1368–1377.

    Article  PubMed  CAS  Google Scholar 

  140. Stanulla, M., Wang, J., Chervinsky, D.S., Thandla, S., et al., DNA Cleavage within the MLL Breakpoint Cluster Region Is a Specific Event Which Occurs as Part of Higher-Order Chromatin Fragmentation during the Initial Stages of Apoptosis, Mol. Cell Biol., 1997, vol. 17, pp. 4070–4079.

    PubMed  CAS  Google Scholar 

  141. Strissel, P.L., Strick, R., Tomek, R.J., Roe, B.A., et al., DNA Structural Peperties of AF9 Are Similar to MLL and Could Act as Recombination Hot Spots Resulting in MLL/AF9 Translocations and Leukemogenesis, Hum. Mol. Genet., 2000, vol. 9, pp. 1671–1679.

    Article  PubMed  CAS  Google Scholar 

  142. Szekvolgyi, L., Hegedus, E., Molnar, M., et al., Nick-Forming Sequences May Be Involved in the Organization of Eukaryotic Chromatin into ∼ 50 Kbp Loops, Histochem. Cell Biol., 2006, vol. 125, pp. 63–73.

    Article  PubMed  CAS  Google Scholar 

  143. Szilagyi, I., Varga, T., Szekvolgyi, L., et al., Non-Random Features of Loop-Size Chromatin Fragmentation, J. Cell Biochem., 2003, vol. 89, pp. 1193–1205.

    Article  PubMed  CAS  Google Scholar 

  144. Postel, E.H., Cleavage of DNA by Human NM23-H2/Nucleoside Diphosphate Kinase Involves Formation of a Covalent Protein-DNA Complex, J. Biol. Chem., 1999, vol. 274, pp. 22 821–22 829.

    Article  CAS  Google Scholar 

  145. Pasero, P., Sjakste, N., Blettry, C., et al., Long-Range Organization and Sequence-Directed Curvature of Xenopus laevis Satellite 1 DNA, Nucleic Acids Res., 1993, vol. 21, pp. 4703–4710.

    Article  PubMed  CAS  Google Scholar 

  146. Lichtenstein, A.V., Sjakste, N.I., Zaboykin, M.M., and Shapot, V.S., Rearrangements of DNA-Protein Interactions in Animal Cells Coupled with Cellular Growth-Quiescence Transitions, Nucleic Acids Res., 1982, vol. 10, pp. 1127–1145.

    Article  PubMed  CAS  Google Scholar 

  147. Lichtenstein, A.V., Zaboykin, M.M., Sjakste, N.I., and Alechina, R.P., Differential Dissociation of Chromatin Digests: A Novel Approach Revealing a Hierarchy of DNA-Protein Interactions within Chromatin Domains, J. Cell Sci., 1991, vol. 99, pp. 503–513.

    PubMed  Google Scholar 

  148. Sjakste, N.I., Zaboikin, M.M., Lichtenstein, A.V., and Shapot, V.S., Analysis of Cell Nucleoproteids by Means of Nucleoproteid-Cilit-Chromatography: I. Changes of Chromatin Structure, Coupled with Cell Transition Dormancy-Proliferation, Mol. Biol. (Moscow), 1981, vol. 15, pp. 1321–1329.

    Google Scholar 

  149. Sjakste, N.I., Zaboikin, M.M., Erenpreisa, E.A., et al., Analysis of Cell Nucleoproteids by Means of Nucleoproteid-Cilit-Chromatography: II. Two Types of Interaction between DNA and Nuclear Matrix Proteins, Mol. Biol. (Moscow), 1985, vol. 19, pp. 1007–1016.

    Google Scholar 

  150. Sjakste, T.G., Taurite, Z.R., and Rashal, I.D., Chromatin Domain Cleavage in the Course of Cell Cycle during Barley Seedling Development, Biokhimiya, 1993, vol. 58, pp. 1714–1722.

    CAS  Google Scholar 

  151. Sjakste, T.G., Taurite, Z.R., and Rashal, I.D., Changes of DNA Association with Nuclear Matrix Proteins in Cells of the First Leaf of Etiolated Barley Seedling under the Kinetin Influence, Fiziol. Rastenii, 1993, vol. 40, pp. 182–186.

    CAS  Google Scholar 

  152. Oberhammer, F., Wilson, J.W., Dive, C., et al., Apoptotic Death in Epithelial Cells: Cleavage of DNA to 300 and/or 50 kb Fragments Prior to or in the Absence of Internucleosomal Fragmentation, EMBO J., 1993, vol. 12, pp. 3679–3684.

    PubMed  CAS  Google Scholar 

  153. Doerfler, W., On the Biological Significance of DNA Methylation, Biochemistry (Moscow), 2005, vol. 70, pp. 618–640.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.I. Sjakste, T.G. Sjakste, 2007, published in Genetika, 2007, Vol. 43, No. 5, pp. 581–600.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sjakste, N.I., Sjakste, T.G. Possible involvement of DNA breaks in epigenetic regulation of cell differentiation. Russ J Genet 43, 467–484 (2007). https://doi.org/10.1134/S1022795407050018

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795407050018

Keywords

Navigation