Skip to main content
Log in

Quantitative trait loci analysis of plant height and ear height in maize (Zea mays L.)

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Genetic map containing 103 microsatellite loci obtained on 200 F2 plants derived from the cross R15 × 478 was used for quantitative trait loci (QTL) mapping in maize. QTLs were characterized in a population of 200 F2:4 lines, derived from selfing the F2 plants, and were evaluated with two replications in two environments. QTL determinations were made from the mean of these two environments. Plant height (PH) and ear height (EH) were measured. Using composite interval mapping (CIM) method, a total of 14 distinct QTLs were identified: nine for PH and five for EH. Additive, partial dominance, dominance, and overdominance actions existed among all detected QTLs affecting plant height and ear height. The QTLs explained 78.27% of the phenotypic variance of PH and 41.50% of EH. The 14 QTLs displayed mostly dominance or partial dominance gene action and mapped to chromosomes 2, 3, 4, 8, and 9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kao, C.H., Zeng, Z.B., and Teasdale, R.D., Multiple Interval Mapping for Quantitative Trait Loci, Genetics, 1999, vol. 159, pp. 1203–1216.

    Google Scholar 

  2. Lander, E.S. and Botstein, D., Mapping Mendelian Factors Underlying Quantitative Traits Using RFLP Linkage Maps, Genetics, 1989, vol. 121, pp. 185–199.

    CAS  PubMed  Google Scholar 

  3. Zeng, Z.B., Theoretical Basis of Separation of Multiple Linked Gene Effects on Mapping Quantitative Trait Loci, Proc. Natl. Acad. Sci. USA, 1993, vol. 90, pp. 10 972–10 976.

    CAS  Google Scholar 

  4. Zeng, Z.B., Precision Mapping of Quantitative Trait Loci, Genetics, 1994, vol. 136, pp. 1457–1466.

    CAS  PubMed  Google Scholar 

  5. Churchill, G.A. and Doerge, R.W., Empirical Threshold Values for Quantitative Trait Mapping, Genetics, 1994, vol. 138, pp. 963–971.

    CAS  PubMed  Google Scholar 

  6. Doerge, R.W. and Churchill, G.A., Permutation Tests for Multiple Loci Affecting a Quantitative Character, Genetics, 1996, vol. 142, pp. 285–294.

    CAS  PubMed  Google Scholar 

  7. Doerge, R.W. and Rebaï, A., Significance Thresholds for QTL Interval Mapping Tests, Heredity, 1996, vol. 76, pp. 459–464.

    Google Scholar 

  8. Cao, Y.G., Wang, G.Y., Wang, S.C., et al., Construction of a Genetic Map and Location of Quantitative Trait Loci for Dwarf Trait in Maize by RFLP Markers, Chinese Sci. Bull., 2000, vol. 45, no. 3, pp. 247–250.

    CAS  Google Scholar 

  9. Coe, E.H. and Polacco, M., Gene List and Working Maps, Maize Genet. Coop. Newslett., 1995, vol. 694, pp. 157–191.

    Google Scholar 

  10. Advanced Statistical Analysis Using SPSS, Chicago, Illinois: SPSS, 2000.

  11. Saghai Maroof, M.A., Soliman, K.M., Jorgensen, R.A., and Allard, R.W., Ribosomal DNA Spacer Length Polymorphisms in Barley: Mendelian Inheritance, Chromosomal Location, and Population Dynamics, Proc. Natl. Acad. Sci. USA, 1984, vol. 81, pp. 8014–8018.

    CAS  PubMed  Google Scholar 

  12. Senior Lynn, M. and Manfred, H., Mapping Maize Microsatellites and Polymerase Chain Reaction Confirmation of the Targeted Repeats Using a CT Primer, Genome, 1993, vol. 36, pp. 884–889.

    Google Scholar 

  13. Lincoln, S., Daly, M., and Lander, E., Mapping Genetic Mapping with MAPMAKER/EXP3.0, Cambridge, MA: Whitehead Institute Technical Report, 1992.

    Google Scholar 

  14. Basten, C.J., Weir, B.S., and Zeng, Z.B., QTL Cartographer, pp.: A Reference Manual and Tutorial for QTL Mapping, Raleigh, NC: Department of Statistics, North Carolina State Univ. (http://statgen.ncsu.edu/qtlcart/cartographer.html), 1997.

    Google Scholar 

  15. Basten, C.J., Weir, B.S., and Zeng, Z.B., QTL Cartographer, Raleigh: North Carolina State Univ., 2001.

    Google Scholar 

  16. Stuber, C.W., Edwards, M.D., and Wendel, J.F., Molecular Marker-Facilitated Investigations of Quantitative Trait Loci in Maize: II. Factors Influencing Yield and Its Component Traits, Crop Sci., 1987, vol. 27, pp. 639–648.

    Google Scholar 

  17. McCouch, S.R., Cho, Y.G., Yano, M., et al., Reported on QTL Nomenclature, Rice Genet. Newslett., 1997, vol. 14, pp. 11–13.

    Google Scholar 

  18. Voorips, R.E., Mapchart Version 2.0: Windows Software for the Graphical Presentation of the Linkage Maps and QTLs, Wageningen, the Netherlands: Plant Res. Int., 2001, pp. 1–15.

    Google Scholar 

  19. Paterson, A.H., Damon, S., Hewitt, J.D., et al., Mendelian Factors Underlying Quantitative Traits in Tomato: Comparison across Species, Generations, and Environments, Genetics, 1991, vol. 127, pp. 181–197.

    CAS  PubMed  Google Scholar 

  20. Beavis, W.D., Smith, O.S., Grant, D., and Fincher, R., Identification of Quantitative Trait Loci Using a Small Sample of Topcrossed and F4 Progeny, Crop Sci., 1994, vol. 34, pp. 882–896.

    Google Scholar 

  21. Veldboom, L.R. and Lee, M., Genetic Mapping of Quantitative Trait Loci in Maize in Stress and Non-Stress Environments: II. Plant Height and Flowering, Crop Sci., 1996, vol. 36, pp. 1320–1327.

    CAS  Google Scholar 

  22. Knapp, S.J., Bridges, W.C., and Birkes, D., Mapping Quantitative Trait Loci Using Molecular Marker Linkage Maps, Theor. Appl. Genet., 1990, vol. 79, pp. 583–592.

    Article  Google Scholar 

  23. Stuber, C.W., Lincoln, S.E., Wolff Helentjaris, T., and Lander, E.S., Identification of Genetic Factors Contributing to Heterosis in a Hybrid from Elite Maize Inbred Lines Using Molecular Markers, Genetics, 1992, vol. 132, no. 11, pp. 823–839.

    CAS  PubMed  Google Scholar 

  24. Melchinger, A.E., Utz, H., and Schon, C.C., Quantitative Trait Locus (QTL) Mapping Using Different Testers and Independent Population Samples in Maize Reveals Low Power of QTL Detection and Large Bias in Estimates of QTL Effects, Genetics, 1998, vol. 149, pp. 383–403.

    CAS  PubMed  Google Scholar 

  25. Abler, B.S.B., Edwards, M.D., and Stuber, C.W., Isoenzymatic Identification of Quantitative Trait Loci in Crosses of Elite Maize Inbreds, Crop Sci., 1991, vol. 31, pp. 267–274.

    CAS  Google Scholar 

  26. Veldboom, L.R., Lee, M., and Woodman, W.L., Molecular Marker-Facilitated Studies in an Elite Maize Population: I. Linkage Analysis and Determination of QTL for Morphological Traits, Theor. Appl. Genet., 1994, vol. 88, pp. 7–16.

    Article  CAS  Google Scholar 

  27. Hallauer, A.R. and Miranda Filho, J.B., Quantitative Genetics in Maize Breeding, Iowa State Univ. Press, 1988, 2nd ed.

  28. Sergio, T.S., Claudio, L.D.S., Aatonio, A.F., et al., Molecular Mapping in Tropical Maize (Zea mays L.) Using Microsatellite Markers: 2. Quantitative Trait Loci (QTL) for Grain Yield, Plant Height, Ear Height and Grain Moisture, Hereditas (Lund, Swed.), 2003, vol. 139, no. 2, pp. 107–115.

    Google Scholar 

  29. Aastveit, A.H. and Aastveit, K., Effects of Genotype-Environment Interactions on Genetic Correlations, Theor. Appl. Genet., 1993, vol. 86, pp. 1007–1013.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z.M., Zhao, M.J., Ding, H.P. et al. Quantitative trait loci analysis of plant height and ear height in maize (Zea mays L.). Russ J Genet 42, 306–310 (2006). https://doi.org/10.1134/S1022795406030112

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795406030112

Keywords

Navigation