Skip to main content
Log in

Polyamines Conjugated to Plasma Membrane Were Involved in Melatonin-mediated Resistance of Apple (Malus pumila Mill.) Fruit to Chilling Stress

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

It has been well documented that polyamine is associated closely with environmental stresses and melatonin pretreatment enhances the resistance of fruit to cold stress. However, mechanism underlining melatonin-mediated chilling resistance remains to be explored. Therefore, in the research, flesh browning degree, relative plasma membrane permeability, malondialdehyde and protein sulfhydryl content in plasma membrane were used to assess the resistance of apple fruit to chilling stress. The polyamine conjugated to plasma membrane of melatonin-pretreated apple (Malus pumila Mill.) fruit flesh cell was elucidated under chilling stress. The results showed that melatonin pretreatment led to obvious increases in the contents of conjugated non-covalently spermidine and spermine, and conjugated covalently putrescine and spermine in plasma membrane of apple fruit under chilling stress, compared with the apple fruit without melatonin pretreatment. Methylglyoxyl-bis (guanylhydrazone) pretreatment could inhibit the melatonin-induced increases of conjugated non-covalently spermidine and spermine by inhibiting the activity of S-adenosylmethionine decarboxylase and free spermidine and spermine contents in flesh, coupled with the decrease in chilling resistance. Similarly, phenanthrolin pretreatment could inhibit the melatonin-induced increases in putrescine and spermidine covalently conjugated to plasma membrane by inhibiting transglutaminase activity in flesh, simultaneously aggravating chilling damage. From the results collectively, it should be suggested the melatonin pretreatment could enhance chilling resistance by increasing non-covalently conjugated spermidine and spermine, and covalently conjugated putrescine and spermine in plasma membrane of apple fruit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Du, H.Y., Liu, G.T., Liu, D.X., Yu, J.M., and Kurtenbach, R., Polyamines conjugated to embryo tonoplast enhance the tolerance of maize to drought stress by maintaining the vacuole conformation, Russ. J. Plant Physiol., 2020, vol. 67, p. 724. https://doi.org/10.1134/S1021443720040044

    Article  CAS  Google Scholar 

  2. Liu, D.X., Liu, H.L., Du, H.Y., Liu, H.P., and Kurtenbach, R., Relationship between polyamines conjugated to mitochondrion membrane and mitochondrion conformation from developing wheat embryos under drought stress, J. Biosci., 2021, vol. 46, p. 31. https://doi.org/10.1007/s12038-021-00155-5

    Article  CAS  PubMed  Google Scholar 

  3. Gao, X., Liu, E., Yin, Y., Yang, L., Huang, Q., Chen, S., and Ho, C.T., Enhancing activities of salt-tolerant proteases secreted by Aspergillus oryzae using atmospheric and room-temperature plasma mutagenesis, J. Agric. Food Chem., 2020, vol. 68, p. 2757. https://doi.org/10.1021/acs.jafc.9b08116

    Article  CAS  PubMed  Google Scholar 

  4. Goyal, M. and Asthir, B., Polyamine catabolism influences antioxidative defense mechanism in shoots and roots of five wheat genotypes under high temperature stress, Plant Growth Regul., 2010, vol. 60, p. 13. https://doi.org/10.1007/s10725-009-9414-8

    Article  CAS  Google Scholar 

  5. Cao, S., Song, C., Shao, J., Bian, K., Chen, W., and Yang, Z., Exogenous melatonin treatment increases chilling tolerance and induces defense response in harvested peach fruit during cold storage, J. Agric. Food Chem., 2016, vol. 64, p. 5215. https://doi.org/10.1021/acs.jafc.6b01118

    Article  CAS  PubMed  Google Scholar 

  6. Lurie, S. and Crisosto, C., Chilling injury in peach and nectarine, Postharvest Biol. Technol., 2005, vol. 37, p. 195. https://doi.org/10.1016/j.postharvbio.2005.04.012

    Article  Google Scholar 

  7. Palma, F., Carvajal, F., Ramos, J.M., Jamilena, M., and Garrido, D., Effect of putrescine application on maintenance of zucchini fruit quality during cold storage: contribution of GABA shunt and other related nitrogen metabolites, Postharvest Biol. Technol., 2015, vol. 99, p. 131. https://doi.org/10.1016/j.postharvbio.2014.08.010

    Article  CAS  Google Scholar 

  8. Min, D., Zhou, J., Li, J., Ai, W., Li, Z., Zhang, X., Fu, X., Zhao, X., Li, F., Li, X., and Guo, Y., SlMYC2 targeted regulation of polyamines biosynthesis contributes to methyl jasmonate-induced chilling tolerance in tomato fruit, Postharvest Biol. Technol., 2020, vol. 174, p. 111443. https://doi.org/10.1016/j.postharvbio.2020.111443

    Article  CAS  Google Scholar 

  9. Jiao, C., IP3 mediates NO-enhanced chilling tolerance in postharvest kiwifruit, Postharvest Biol. Technol., 2021, vol. 176, 111463. https://doi.org/10.1016/j.postharvbio.2021.111463

    Article  CAS  Google Scholar 

  10. Jahan, M.S., Shu, S., Wang, Y., Chen, Z., He, M., Tao, M., Sun, J., and Guo, S., Melatonin alleviates heat-induced damage of tomato seedlings by balancing redox homeostasis and modulating polyamine and nitric oxide biosynthesis, BMC Plant Biol., 2019, vol. 19, p. 414. https://doi.org/10.1186/s12870-019-1992-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tiburcio, A.F., Campos, J.L., and Figueras, X., Recent advances in the understanding of polyamines functions during plant development, Plant Growth Regul., 1993, vol. 12, p. 33. https://doi.org/10.1007/BF00027215

    Article  Google Scholar 

  12. Slocum, R.D. and Galston, A.W., Changes in polyamine biosynthesis associated with postfertilization growth and development in tobacco ovary tissues, Plant Physiol., 1985, vol. 79, p. 336. https://doi.org/10.1104/pp.79.2.336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cacho, M., Torres, D.A., and Elena-Rosselló, J.A., Role of polyamines in regulating silymarin production in Silybum marianum (L.) Gaertn (Asteraceae) cell cultures under conditions of calcium deficiency, J. Plant Physiol., 2013, vol. 17, p. 1344. https://doi.org/10.1016/j.jplph.2013.05.005

    Article  CAS  Google Scholar 

  14. Guo, J., Wang, S., Yu, X., Dong, R., Li, Y., Mei, X., and Shen, Y.Y., Polyamines regulate strawberry fruit ripening by ABA, IAA, and ethylene, Plant Physiol., 2018, vol. 177, p. 339. https://doi.org/10.1104/pp.18.00245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Du, H.Y., Liu, D.X., Liu, G.T., Liu, H.P., and Kurtenbach, R., Relationship between polyamines and anaerobic respiration of wheat seedling root under water-logging stress, Russ. J. Plant Physiol., 2018, vol. 65, p. 874. https://doi.org/10.1134/S1021443718060055

    Article  CAS  Google Scholar 

  16. Galston, A.W. and Kaur-Sawhney, R., Polyamines as endogenous growth regulators, in Plant Hormones: Physiology, Biochemistry and Molecular Biology, Davies, P.J., Ed., Dordrecht: Kluwer, 1995, p. 158. https://doi.org/10.1007/978-94-011-0473-9_8

  17. Del Duca, S., Beninati, S., and Serafini-Fracassini, D., Polyamines in chloroplasts: identification of their glutamyl and acetyl derivatives, Biochem. J., 1995, vol. 305, p. 233. https://doi.org/10.1042/bj3050233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Alexieva, V., Sergiev, I., Mapelli, S., and Karanov, E., The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat, Plant Cell Environ., 2001, vol. 24, p. 1337. https://doi.org/10.1046/j.1365-3040.2001.00778.x

    Article  CAS  Google Scholar 

  19. Sharma, P. and Rajam, M.V., Spatial and temporal changes in endogenous polyamine levels associated with osmotic embryogenesis from different hypocotyls segments of eggplant (Solanum melongena L.), J. Plant Physiol., 1995, vol. 146, p. 658. https://doi.org/10.1016/S0176-1617(11)81929-2

    Article  CAS  Google Scholar 

  20. Di Tomaso, J.M., Shaff, J.E., and Kochian, L.V., Putrescine-induced wounding and its effects on membrane integrity and ion transport processes in roots of intact corn seedlings, Plant Physiol., 1989, vol. 90, p. 988. https://doi.org/10.1104/pp.90.3.988

    Article  CAS  Google Scholar 

  21. Qiu, Q.S. and Su, X.F., The influence of extracellular-side Ca2+ on the activity of the plasma membrane H+‑ATPase from wheat roots, Austr. J. Plant Physiol., 1998, vol. 25, p. 923. https://doi.org/10.1071/PP98036

    Article  CAS  Google Scholar 

  22. Bradford, M.M., A rapid and sensitive methods for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binging, Anal. Biochem., 1976, vol. 72, p. 248. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  23. Ellman, G.L., Tissue sulfhydryl groups, Arch. Biochim. Biophys., 1959, vol. 82, p. 70. https://doi.org/10.1016/0003-9861(59)90090-6

    Article  CAS  Google Scholar 

  24. Kaur-Sawhney, R. and Shin, M., Relation of polyamines synthesized titer to aging and senescence in oat leaves, Plant Physiol., 1982, vol. 69, p. 405. https://doi.org/10.1104/pp.69.2.405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Icekson, I. and Apelbaum, A., Evidence for transglutaminase activity in plant tissue, Plant Physiol., 1987, vol. 84, p. 972. https://doi.org/10.1104/pp.84.4.972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dutra, N.T., Silveira, V., Azevedo, I.G., Gomes-Neto, L.R., Facanha, A.R., Steiner, N., Guerra, M.P., Floh, E.I.S., and Santa-Catarina, C., Polyamines affect the cellular growth and structure of pro-embryogenic masses in Araucaria angustifolia embryogenic cultures through the modulation of proton pump activities and endogenous levels of polyamines, Physiol. Plant., 2013, vol. 148, p. 121. https://doi.org/10.1111/j.1399-3054.2012.01695.x

    Article  CAS  PubMed  Google Scholar 

  27. Williams, K., Interactions of polyamines with ion channels, Biochem. J., 1997, vol. 325, p. 289. https://doi.org/10.1042/bj3250289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu, K., Fu, H.H., Bei, Q.X., and Luan, S., Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements, Plant Physiol., 2000, vol. 124, p. 1315. https://doi.org/10.1104/pp.124.3.1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Du, H.Y., Liu, G.T., Hua, C.M., Liu, D.X., He, Y.Y., Liu, H.P., Kurtenbach, R., and Ren, D.T., Exogenous melatonin alleviated chilling injury in harvested plum fruit via affecting the levels of polyamines conjugated to plasma membrane, Postharvest Biol. Technol., 2021, vol. 179, art. ID 111585. https://doi.org/10.1016/j.postharvbio.2021.111585

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by National Natural Science Foundation of China (grant no. 31271627) and Science and Technology Program of Henan Province (grant no. 192102110135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. P. Liu.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving humans or animals performed by any of the authors.

Additional information

Abbreviations: CC—conjugated covalently; MGBG—methylglyoxyl-bis (guanylhydrazone); PA—polyamine; Put—putrescine; SAMDC—S-adenosylmethionine decarboxylase; Spd—spermidine; Spm—spermine; TGase—transglutaminase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Q.Y., Lai, Y., Hua, C.M. et al. Polyamines Conjugated to Plasma Membrane Were Involved in Melatonin-mediated Resistance of Apple (Malus pumila Mill.) Fruit to Chilling Stress. Russ J Plant Physiol 69, 67 (2022). https://doi.org/10.1134/S1021443722040033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722040033

Keywords:

Navigation