Skip to main content
Log in

Effects of exogenous spermidine on antioxidant system of tomato seedlings exposed to high temperature stress

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The effects of foliar spraying with spermidine (Spd) on antioxidant system in tomato (Lycopersicon esculentum Mill.) seedlings were investigated under high temperature stress. The high temperature stress significantly inhibited plant growth and reduced chlorophyll (Chl) content. Application of exogenous 1 mM Spd alleviated the inhibition of growth induced by the high temperature stress. Malondialdehyde (MDA), hydrogen peroxide (H2O2) content and superoxide anion (O2) generation rate were significantly increased by the high temperature stress, but Spd significantly reduced the accumulation of reactive oxygen species (ROS) and MDA content under the stress. The high temperature stress significantly decreased glutathione (GSH) content and activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR), but increased contents of dehydroascorbic acid (DHA), ascorbic acid (AsA), and oxidized glutathione (GSSG) in tomato leaves. However, Spd significantly increased the activities of antioxidant enzymes, levels of antioxidants and endogenous polyamines in tomato leaves under the high temperature stress. In addition, to varying degrees, Spd regulated expression of MnSOD, POD, APX2, APX6, GR, MDHAR, DHAR1, and DHAR2 genes in tomato leaves exposed to the high temperature stress. These results suggest that Spd could change endogenous polyamine levels and alleviate the damage by oxidative stress enhancing the non-enzymatic and enzymatic antioxidant system and the related gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

AsA:

ascorbic acid

CAT:

catalase

Chl:

chlorophyll

DHA:

dehydroascorbate

GR:

glutathione reductase

GSH:

reduced glutathione

GSSG:

oxidized glutathione

H2O2 :

hydrogen peroxide

MDA:

malondialdehyde

Pas:

polyamines

POD:

peroxidase

Put:

putrescine

SOD:

superoxide dismutase

Spd:

spermidine

Spm:

spermine

References

  1. Nahar, K., Hasanuzzaman, M., Alam, M.M., and Fujita, M., Exogenous glutathione confers high temperature stress tolerance in mung bean (Vigna radiata L.) by modulating antioxidant defense and methylglyoxal detoxification system, Environ. Exp. Bot., 2015, vol. 112, pp. 44–54.

    Article  CAS  Google Scholar 

  2. Apel, K. and Hirt, H., Reactive oxygen species: metabolism, oxidative stress, and signal transduction, Annu. Rev. Plant Biol., 2004, vol. 55, pp. 373–399.

    Article  CAS  PubMed  Google Scholar 

  3. Sharma, P., Jha, A.B., Dubey, R.S., and Pessarakli, M., Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions, J. Bot., 2012, vol. 2012, pp. 1–26.

    Article  Google Scholar 

  4. Mittler, R., Oxidative stress, antioxidants and stress tolerance, Trends Plant Sci., 2002, vol. 7, pp. 405–410.

    Article  CAS  PubMed  Google Scholar 

  5. Foyer, C.H. and Noctor, G., Ascorbate and glutathione: the heart of the redox hub, Plant Physiol., 2011, vol. 155, pp. 2–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu, J.H., Kitashiba, H., Wang, J., Ban, Y., and Moriguchi, T., Polyamines and their ability to provide environmental stress tolerance to plants, Plant Biotechnol., 2007, vol. 24, pp. 117–126.

    Article  CAS  Google Scholar 

  7. Gupta, K., Dey, A., and Gupta, B., Plant polyamines in abiotic stress responses, Acta Physiol. Plant., 2013, vol. 35, pp. 2015–2036.

    Article  CAS  Google Scholar 

  8. Todorova, D., Sergiev, I., Alexieva, V., Karanov, E., Smith, A., and Hall, M., Polyamine content in Arabidopsis thaliana (L.) Heynh during recovery after low and high temperature treatments, Plant Growth Regul., 2007, vol. 51, pp. 185–191.

    Article  CAS  Google Scholar 

  9. Goyal, M. and Asthir, B., Polyamine catabolism influences antioxidative defense mechanism in shoots and roots of five wheat genotypes under high temperature stress, Plant Growth Regul., 2010, vol. 60, pp. 13–25.

    Article  CAS  Google Scholar 

  10. Tian, J., Wang, L.P., Yang, Y.J., Sun, J., and Guo, S.R., Exogenous spermidine alleviates the oxidative damage in cucumber seedlings subjected to high temperatures, J. Am. Soc. Hortic. Sci., 2012, vol. 137, pp. 11–19.

    Article  CAS  Google Scholar 

  11. Mostofa, M.G., Yoshida, N., and Fujita, M., Spermidine pretreatment enhances heat tolerance in rice seedlings through modulating antioxidative and glyoxalase systems, Plant Growth Regul., 2014, vol. 73, pp. 31–44.

    Article  CAS  Google Scholar 

  12. Arnon, D.T., Copper enzymes in isolated chloroplasts polyphenol oxidase in Beta vulgaris, Plant Physiol., 1949, vol. 24, pp. 1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Duan, J.J., Li, J., Guo, S.R., and Kang, Y.Y., Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance, J. Plant Physiol., 2008, vol. 165, pp. 1620–1635.

    Article  CAS  PubMed  Google Scholar 

  14. Mukherjee, S.P. and Choudhuri, M.A., Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings, Physiol. Plant., 1983, vol. 58, pp. 166–170.

    Article  CAS  Google Scholar 

  15. Elstner, E.F. and Heupel, A., Inhibition of nitrite formation from hydroxylammonium-chloride: a simple assay for superoxide dismutase, Anal. Biochem., 1976, vol. 70, pp. 616–620.

    Article  CAS  PubMed  Google Scholar 

  16. Dhindsa, R.S., Pulmb-Dhindsa, P., and Thorpe, T.A., Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase, J. Exp. Bot., 1981, vol. 32, pp. 93–101.

    Article  CAS  Google Scholar 

  17. Lutts, S., Kinet, J.M., and Bouharmont, J., NaClinduced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance, Ann. Bot., 1996, vol. 78, pp. 389–398.

    Article  CAS  Google Scholar 

  18. Costa, H., Gallego, S.M., and Tomaro, M.L., Effect of UV-B radiation on antioxidant defense system in sunflower cotyledons, Plant Sci., 2002, vol. 162, pp. 939–945.

    Article  CAS  Google Scholar 

  19. Griffiths, O.W., Determination of glutathione and glutathione disulphide using glutathione reductase and 2-vinylpyridine, Anal. Biochem., 1980, vol. 106, pp. 207–212.

    Article  Google Scholar 

  20. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  CAS  PubMed  Google Scholar 

  21. Becana, M., Aparicio-Tejo, P., Irigoyan, J.J., and Sanchez-Diaz, M., Some enzymes of hydrogen peroxide metabolism in leaves and root nodules of Medicago sativa, Plant Physiol., 1986, vol. 82, pp. 1169–1171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hammerschmidt, R., Nuckles, E., and Kuc, J., Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium, Physiol. Plant Pathol., 1982, vol. 20, pp. 73–82.

    Article  CAS  Google Scholar 

  23. Chance, B. and Maehly, A.C., Assay of catalase and peroxidases, Methods Enzymol., 1955, vol. 2, pp. 764–775.

    Article  Google Scholar 

  24. Nakano, Y. and Asada, K., Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts, Plant Cell Physiol., 1981, vol. 22, pp. 867–880.

    CAS  Google Scholar 

  25. Foyer, C.H. and Halliwell, B., The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism, Planta, 1976, vol. 133, pp. 21–25.

    Article  CAS  PubMed  Google Scholar 

  26. Hossain, M.A., Nakano, Y., and Asada, K., Monodehydroascorbate reductase in spinach chloroplasts and its participation in the generation of ascorbate for scavenging hydrogen peroxide, Plant Cell Physiol., 1984, vol. 25, pp. 385–395.

    CAS  Google Scholar 

  27. Rivero, R.M., Ruiz, J.M., and Romero, L., Oxidative metabolism in tomato plants subjected to heat stress, J. Hortic. Sci. Biotechnol., 2004, vol. 79, pp. 560–564.

    Article  CAS  Google Scholar 

  28. Ma, Y.H., Ma, F.W., Zhang, J.K., Li, M.J., Wang, Y.H., and Liang, D., Effects of high temperature on activities and gene expression of enzymes involved in ascorbate–glutathione cycle in apple leaves, Plant Sci., 2008, vol. 175, pp. 761–766.

    Article  CAS  Google Scholar 

  29. Kocsy, G., Galiba, G., and Brunold, C., Role of glutathione in adaptation and signalling during chilling and cold acclimation in plants, Physiol. Plant., 2001, vol. 113, pp. 158–164.

    Article  CAS  PubMed  Google Scholar 

  30. Talaat, N.B. and Shawky, B.T., Modulation of the ROS-scavenging system in salt-stressed wheat plants inoculated with arbuscular mycorrhizal fungi, J. Plant Nutr. Soil Sci., 2014, vol. 177, pp. 199–207.

    Article  CAS  Google Scholar 

  31. Wu, X., He, J., Ding, H., Zhu, Z., Chen, J., Xu, S., and Zha, D., Modulation of zinc-induced oxidative damage in Solanum melongena by 6-benzylaminopurine involves ascorbate–glutathione cycle metabolism, Environ. Exp. Bot., 2015, vol. 116, pp. 1–11.

    Article  CAS  Google Scholar 

  32. Negrel, J. and Lherminier, J., Peroxidase-mediated integration of tyramine into xylem cell walls of tobacco leaves, Planta, 1987, vol. 172, pp. 494–501.

    Article  CAS  PubMed  Google Scholar 

  33. Puyang, X., An, M., Han, L., and Zhang, X.Z., Protective effect of spermidine on salt stress induced oxidative damage in two Kentucky bluegrass (Poa pratensis L.) cultivars, Ecotoxicol. Environ. Safety, 2015, vol. 117, pp. 96–106.

    Article  CAS  PubMed  Google Scholar 

  34. Lightfoot, H.L. and Jonathan, H., Endogenous polyamine function—the RNA perspective, Nucleic Acids Res., 2014, vol. 42, pp. 11275–11290.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhang, G.W., Liu, Z.L., Zhou, J.G., and Zhu, Y.L., Effects of Ca(NO3)2 stress on oxidative damage, antioxidant enzymes activities and polyamine contents in roots of grafted and non-grafted tomato plants, Plant Growth Regul., 2008, vol. 56, pp. 7–19.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Guo.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sang, Q.Q., Shu, S., Shan, X. et al. Effects of exogenous spermidine on antioxidant system of tomato seedlings exposed to high temperature stress. Russ J Plant Physiol 63, 645–655 (2016). https://doi.org/10.1134/S1021443716050113

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443716050113

Keywords

Navigation