Skip to main content
Log in

Physiological and proteomic analysis of mycorrhizal Pinus massoniana inoculated with Lactarius insulsus under drought stress

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

This study aimed to investigate physiological and protein expression alterations of mycorrhizal Pinus massoniana Lamb. inoculated with Lactarius insulsus in response to drought stress. The P. massoniana seedlings were inoculated with L. insulsus (Li group) and ectomycorrhized fungal-free filtrate (control, CK group), respectively. After two and a half years, all the plants were exposed to a simulate drought condition without water for 21 days. The soil relative water content (SRWC), wilting degree (WD) and wilting rate (WR) of the plants were measured and root proteome was analyzed based on two-dimensional gel electrophoresis (2-DE), respectively at four time points as 0, 7, 14 and 21 days during the whole drought period. Finally, the electrospray ionization mass spectrometry (ESI-MS) was used to identify the differentially expressed proteins (DEPs) between Li and CK groups. The SRWC was higher, while WR and WD were lower in Li group, compared with that in CK group. Based on 2-DE and ESI-MS, 22 DEPs were identified between Li and CK groups during drought stress. Among them, four proteins had the annotated information in relevant databases, including 1,4-benzoquinone reductase, PSCHI4, ribosomal protein L16 (RPL16) and AINTEGUMENTA-like (AIL) protein. Mycorrhizal P. massoniana inoculated with L. insulsus achieved an enhanced drought resistance as compared to the non-mycorrhizal, and the altered protein expressions such as 1,4-benzoquinone reductase, PSCHI4, RPL16, and AIL might contribute to the improved resistance under drought stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

2-DE:

two-dimensional gel electrophoresis

DEPs:

differentially expressed proteins

DREBs:

dehydration responsive element binding proteins

ECM:

ectomycorrhiza

ESI-MS:

electrospray ionization mass spectrometry

SRWC:

soil relative water content

WD:

wilting degree

WR:

wilting rate

References

  1. Zhang, Y., Wei, Z.M., Xi, M.L., and Shi, J.S., Efficient plant regeneration in vitro in Pinus massoniana L., Fen Zi Xi Bao Sheng Wu Xue Bao, 2006, vol. 39, pp. 271–276 [in Chinese].

    CAS  PubMed  Google Scholar 

  2. Liu, T.W., Hu, W.J., Wang, X.Q., Niu, L., Fu, B., Wu, F.H., Pei, Z.M., and Zheng, H.L., A 2-D DIGE analysis of simulated acid rain-responsive proteins in Pinus massoniana needles, Trees, 2012, vol. 26, pp. 1–11.

    Article  CAS  Google Scholar 

  3. Bowne, J.B., Erwin, T.A., Juttner, J., Schnurbusch, T., Langridge, P., Baci, A., and Roessner, U., Drought responses of leaf tissues from wheat cultivars of differing drought tolerance at the metabolite level, Mol. Plant, 2012, vol. 5, pp. 418–429.

    Article  CAS  PubMed  Google Scholar 

  4. Kipfer, T., Wohlgemuth, T., van der Heijden, M.G., Ghazoul, J., and Egli, S., Growth response of drought-stressed Pinus sylvestris seedlings to singleand multi-species inoculation with ectomycorrhizal fungi, PLoS ONE, 2012, vol. 7, p.e35275. doi 10.1371/journal.pone.0035275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Duñabeitia, M.K., Hormilla, S., Garcia-Plazaola, J.I., Txarterina, K., Arteche, U., and Becerril, J.M., Differential responses of three fungal species to environmental factors and their role in the mycorrhization of Pinus radiata D. Don, Mycorrhiza, 2004, vol. 14, pp. 11–18.

    Article  PubMed  Google Scholar 

  6. Lehto, T. and Zwiazek, J.J., Ectomycorrhizas and water relations of trees: a review, Mycorrhiza, 2011, vol. 21, pp. 71–90.

    Article  PubMed  Google Scholar 

  7. Zhu, L.H., Wu, X.Q., Qu, H.Y., Ji, J., and Ye, J.R., Micropropagation of Pinus massoniana and mycorrhiza formation in vitro, Plant Cell Tissue Organ Cult., 2010, vol. 102, pp. 121–128.

    Article  Google Scholar 

  8. Wei, S., Wu, X.Q., and Ye, J.R., Screening elite ectomycorrhizal fungi for poplars in Jiangsu, J. Nanjing For. Univ., 2009, vol. 33, pp. 81–84.

    Google Scholar 

  9. Xu, M.L., Zhu, J.J., Kang, H.Z., Xu, A.H., Zhang, J.X., and Li, F.Q., Optimum conditions for pure culture of major ectomycorrhizal fungi obtained from Pinus sylvestris var. mongolica plantations in southeastern Keerqin sandy lands, China, J. For. Res., 2008, vol. 19, pp. 113–118.

    Google Scholar 

  10. Wang, Y. and Ding, G., Effects of exogenous mycorrhiza on growth of Pinus massoniana seedlings, J. Cent. South Univ. For. Technol., 2011, vol. 31, pp. 31–34.

    Google Scholar 

  11. Xu, C. and Wu, X.Q., Drought responses and related endogenous polyamine changes in mycorrhizaed Pinus massoniana, Acta Bot. Boreali-Occident. Sin., 2009, vol. 29, pp. 296–301.

    Google Scholar 

  12. Wang, Y. and Ding, G.J., Physiological responses of mycorrhizal Pinus massoniana seedlings to drought stress and drought resistance evaluation, Chin. J. Appl. Ecol., 2013, vol. 24, pp. 639–645.

    Google Scholar 

  13. Hajheidari, M., Eivazi, A., Buchanan, B.B., Wong, J.H., Majidi, I., and Salekdeh, G.H., Proteomics uncovers a role for redox in drought tolerance in wheat, J. Proteome Res., 2007, vol. 6, pp. 1451–1460.

    Article  CAS  PubMed  Google Scholar 

  14. Wang, X., Liu, Z., Niu, L., and Fu, B., Long-term effects of simulated acid rain stress on a staple forest plant, Pinus massoniana Lamb: a proteomic analysis, Trees, 2013, vol. 27, pp. 297–309.

    Article  Google Scholar 

  15. Hu, W.J., Chen, J., Liu, T.W., Simon, M., Wang, W.H., Wu, F.H., Liu, X., Shen, Z.J., and Zheng, H.L., Comparative proteomic analysis of differential responses of Pinus massoniana and Taxus wallichiana var. mairei to simulated acid rain, Int. J. Mol. Sci., 2014, vol. 15, pp. 4333–4355.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Feng, G., Zhang, F., Li, X., Tian, C., Tang, C., and Rengel, Z., Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots, Mycorrhiza, 2002, vol. 12, pp. 185–190.

    Article  CAS  PubMed  Google Scholar 

  17. Cheng, X., Jin, G., Zhang, X., Tian, M., and Zou, L., Stage-dependent STAT3 activation is involved in the differentiation of rat hippocampus neural stem cells, Neurosci. Lett., 2011, vol. 493, pp. 18–23.

    Article  CAS  PubMed  Google Scholar 

  18. Bona, E., Marsano, F., Massa, N., Cattaneo, C., Cesaro, P., Argese, E., Sanita di Toppi, L., Cavaletto, M., and Berta, G., Proteomic analysis as a tool for investigating arsenic stress in Pteris vittata roots colonized or not by arbuscular mycorrhizal symbiosis, J. Proteomics, 2011, vol. 74, pp. 1338–1350.

    Article  CAS  PubMed  Google Scholar 

  19. Shi, J., Zhen, Y., and Zheng, R.H., Proteome profiling of early seed development in Cunninghamia lanceolata (Lamb.) Hook, J. Exp. Bot., 2010, vol. 61, pp. 2367–2381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhao, C., Wang, J., Cao, M., Zhao, K., Shao, J., Lei, T., Yin, J., Hill, G.G., Xu, N., and Liu, S., Proteomic changes in rice leaves during development of field-grown rice plants, Proteomics, 2005, vol. 5, pp. 961–972.

    Article  CAS  PubMed  Google Scholar 

  21. Anjum, S.A., Xie, X.Y., Wang, L., Saleem, M.F., Man, C., and Lei, W., Morphological, physiological and biochemical responses of plants to drought stress, Afr. J. Agric. Res., 2011, vol. 6, pp. 2026–2032.

    Google Scholar 

  22. Brock, B.J. and Gold, M.H., 1,4-Benzoquinone reductase from basidiomycete Phanerochaete chrysosporium: spectral and kinetic analysis, Arch. Biochem. Biophys., 1996, vol. 331, pp. 31–40.

    Article  CAS  PubMed  Google Scholar 

  23. Islam, M.A., Sturrock, R.N., and Ekramoddoullah, A.K., A proteomics approach to identify proteins differentially expressed in Douglas-fir seedlings infected by Phellinus sulphurascens, J. Proteomics, 2008, vol. 71, pp. 425–438.

    Article  CAS  PubMed  Google Scholar 

  24. Zhao, Q. and Dixon, R.A., Transcriptional networks for lignin biosynthesis: more complex than we thought? Trends Plant Sci., 2011, vol. 16, pp. 227–233.

    Article  CAS  PubMed  Google Scholar 

  25. Moura-Sobczak, J., Souza, U., and Mazzafera, P., Drought stress and changes in the lignin content and composition in Eucalyptus, BMC Proc., 2011, vol. 5, suppl. 7, p. 103. doi 10.1186/1753-6561-5-S7-P103

    Article  Google Scholar 

  26. Shimizu, M., Yuda, N., Nakamura, T., Tanaka, H., and Wariishi, H., Metabolic regulation at the tricarboxylic acid and glyoxylate cycles of the lignin-degrading basidiomycete Phanerochaete chrysosporium against exogenous addition of vanillin, Proteomics, 2005, vol. 5, pp. 3919–3931.

    Article  CAS  PubMed  Google Scholar 

  27. Wu, H., Echt, C.S., Popp, M.P., and Davis, J.M., Molecular cloning, structure and expression of an elicitor-inducible chitinase gene from pine trees, Plant Mol. Biol., 1997, vol. 33, pp. 979–987.

    Article  CAS  PubMed  Google Scholar 

  28. Smart, L.B., Moskal, W.A., Cameron, K.D., and Bennett, A.B., MIP genes are down-regulated under drought stress in Nicotiana glauca, Plant Cell Physiol., 2001, vol. 42, pp. 686–693.

    Article  CAS  PubMed  Google Scholar 

  29. Barciszewska, M., Erdmann, V.A., and Barciszewski, J., Ribosomal 5S RNA: tertiary structure and interactions with proteins, Biol. Rev. Camb. Philos. Soc., 1996, vol. 71, pp. 1–25.

    Article  CAS  PubMed  Google Scholar 

  30. Williams, M.E. and Sussex, I.M., Developmental regulation of ribosomal protein L16 genes in Arabidopsis thaliana, Plant J., 1995, vol. 8, pp. 65–76.

    Article  CAS  PubMed  Google Scholar 

  31. Xiao, X., Yang, F., Zhang, S., Korpelainen, H., and Li, C., Physiological and proteomic responses of two contrasting Populus cathayana populations to drought stress, Physiol. Plant., 2009, vol. 136, pp. 150–168.

    Article  CAS  PubMed  Google Scholar 

  32. Horstman, A., Willemsen, V., Boutilier, K., and Heidstra, R., AINTEGUMENTA-LIKE proteins: hubs in a plethora of networks, Trends Plant Sci., 2014, vol. 19, pp. 146–157.

    Article  CAS  PubMed  Google Scholar 

  33. Mizoi, J., Shinozaki, K., and Yamaguchi-Shinozaki, K., AP2/ERF family transcription factors in plant abiotic stress responses, Biochim. Biophys. Acta, 2012, vol. 1819, pp. 86–96.

    Article  CAS  PubMed  Google Scholar 

  34. Hussain, S.S., Kayani, M.A., and Amjad, M., Transcription factors as tools to engineer enhanced drought stress tolerance in plants, Biotechnol. Prog., 2011, vol. 27, pp. 297–306.

    Article  CAS  PubMed  Google Scholar 

  35. Morran, S., Eini, O., Pyvovarenko, T., Parent, B., Singh, R., Ismagul, A., Eliby, S., Shirley, N., Langridge, P., and Lopato, S., Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors, Plant Biotechnol. J., 2011, vol. 9, pp. 230–249.

    Article  CAS  PubMed  Google Scholar 

  36. Buitink, J., Leger, J.J., Guisle, I., Vu, B.L., Wuillème, S., Lamirault, G., Bars, A.L., Meur, N.L., Becker, A., and Küster, H., Transcriptome profiling uncovers metabolic and regulatory processes occurring during the transition from desiccation-sensitive to desiccation-tolerant stages in Medicago truncatula seeds, Plant J., 2006, vol. 47, pp. 735–737.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Q. Wu.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Wu, X.Q. Physiological and proteomic analysis of mycorrhizal Pinus massoniana inoculated with Lactarius insulsus under drought stress. Russ J Plant Physiol 63, 709–717 (2016). https://doi.org/10.1134/S1021443716040178

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443716040178

Keywords

Navigation