Skip to main content
Log in

Exogenous nitric oxide-mediated GSH-PC synthesis pathway in tomato under copper stress

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) is a bioactive molecule that is extensively used at various biotic and abiotic stresses. This study investigated the law governing the variation of related enzymatic activity and metabolites in exogenous NO-mediated GSH-PC synthesis pathway in tomato solution culture subjected to copper stress. Results demonstrated that relative to control copper stress was more effective in the activation of γ-ECS and GS in tomato. Moreover, sharp increases in root GSH and PCs were observed, which keep upward as the process continued. Moreover, adding exogenous SNP (NO donor) can further improve γ-ECS and GS activities in tomato roots and facilitate the synthesis of GSH and PCs, thereby enhancing its peroxide removal ability, chelating excessive Cu2+, and reducing its biotoxicity. The GSH-PC metabolism in the tomato leaves lagged behind that in the roots to a certain extent. Although exogenous GSH synthesis inhibitor BSO inhibited γ-ECS activity in tomato roots, as well as GSH and PC syntheses, adding SNP can counteract this effect by lessening the influence to the PCs in leaves. Under copper stress, exogenous NO may stimulate a signaling mechanism and reduce the biotoxicity and oxidative damage caused by excessive Cu2+ through activating or enhancing the enzymatic and non-enzymatic systems in the GSH-PC synthesis pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ASA:

Ascorbic acid

BSO:

L-buthionine-(S,R)-sulfoximine

DTNB:

5,5-dithio-bis(2-nitrobenzoic acid)

DTPA:

diethylenetriaminepentaacetic acid

GS:

glutathione synthetase

GSH:

reduced glutathione

GSSG:

oxidized glutathione

Hb:

bovine hemoglobin

H2O2:

hydrogen peroxide

NEM:

N-ethyl-maleimide

OPT:

o-phthalaldehyde

PCs:

phytochelatins

ROS:

reactive oxygen species

SNP:

sodium nitroprusside dihydrate

TAST:

total acid-soluble thiols

TG:

total glutathione [GSH + GSSG]

γ-ECs:

γ-glutamylcysteine synthetase

References

  1. Cobbett, C. and Goldsbrough, P., Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis, Annu. Rev. Plant Biol., 2002, vol. 53, pp. 159–182.

    Article  CAS  PubMed  Google Scholar 

  2. Wejas, S., Ruszczyriska, A., Bulska, E., Clements, S., and Antosiewisz, D.M., The role of subcellular distribution of cadmium and phytochelatins in the generation of distinct phenotypes of AtPCS1-and CePCS3-expressing tobacco, J. Plant Physiol., 2010, vol. 167, pp. 981–988.

    Article  Google Scholar 

  3. Kuzminov, F.I., Brown, C.M., Fadeev, V.V., and Gorbunov, M.Y., Effects of metal toxicity on photosyn-thetic processes in coral symbionts, Symbiodinium spp., J. Exp. Mar. Biol. Ecol., 2013, vol. 446, pp. 216–227.

    Article  CAS  Google Scholar 

  4. Bona, E., Marsano, F., Cavaletto, M., and Berta, G., Proteomic characterization of copper stress response in Cannabis sativa roots, J. Proteomics, 2007, vol. 7, pp. 1121–1130.

    Article  CAS  Google Scholar 

  5. Zhao, H., Wu, L., Chai, T., Zhang, Y., Tian, J., and Ma, S., The effects of copper, manganese and zinc on plant growth and elemental accumulation in the manganese-hyperaccumulator Phytolacca americana, J. Plant Physiol., 2012, vol. 169, pp. 1243–1252.

    Article  CAS  PubMed  Google Scholar 

  6. Boldizsár, Á., Simon-Sarkadi, L., Szirtés, K., Soltesz, A., Szalai, G., Keyster, M., Ludid, N., Galiba, G., and Kocsy, G., Nitric oxide affects saltinduced changes in free amino acid levels in maize, J. Plant Physiol., 2013, vol. 170, pp. 1020–1027.

    Article  PubMed  Google Scholar 

  7. Saxena, I. and Shekhawat, G.S., Nitric oxide (NO) in alleviation of heavy metal induced phytotoxicity and its role in protein nitration, Nitric Oxide, 2013, vol. 32, pp. 13–20.

    Article  CAS  PubMed  Google Scholar 

  8. Mhadhbi, H., Fotopoulos, V., Mylona, P.V., Jebara, M., Elarbi, Aouani, M., and Polidoros, A.N., Antioxidant gene-enzyme responses in Medicago truncatula genotypes with different degree of sensitivity to salinity, Acta Physiol. Plant., 2011, vol. 141, pp. 201–214.

    Article  CAS  Google Scholar 

  9. Gill, S.S., Hasanuzzaman, M., Nahar, K., Macovei, A., and Tuteja, N., Importance of nitric oxide in cadmium stress tolerance in crop plants, Plant Physiol. Biochim., 2013, vol. 63, pp. 254–261.

    Article  CAS  Google Scholar 

  10. Zhang, Y.K., Han, X.J., Chen, X.L., and Jin, H., Exogenous nitric oxide on antioxidative system and ATPase activities from tomato seedlings under copper stress, Sci. Hortic., 2009, vol. 123, pp. 217–223.

    Article  CAS  Google Scholar 

  11. Dong, Y.X., Wang, X.F., and Cui, X.M., Exogenous nitric oxide involved in subcellular distribution and chemical forms of Cu2+ under copper stress in tomato seedlings, J. Integr. Agr., 2013, pp. 1783–1790.

    Google Scholar 

  12. De Vos, C.H.R., Vonk, M.J., Vooijs, R., and Schat, H., Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus, Plant Physiol., 1992, vol. 98, pp. 853–858.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Ellman, G.L., Tissue sulfhydryl groups, Arch. Biochem. Biophys., 1959, vol. 82, pp. 70–77.

    Article  CAS  PubMed  Google Scholar 

  14. Hao, J.J., Kang, Z.L., and Yu, Y., Plant Physiology Experiment Technology, Beijing: Chemical Industry Press, 2006.

    Google Scholar 

  15. Lu, R.K., Agricultural Chemical Analysis Method of Soil, Beijing: China Agricultural Science and Technology Press, 2000.

    Google Scholar 

  16. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  CAS  PubMed  Google Scholar 

  17. Tewari, R.K., Hahn, E.J., and Paek, K.Y., Modulation of copper toxicity-induced oxidative damage by nitric oxide supply in the adventitious roots of Panax ginseng, Plant Cell Rep., 2008, vol. 27, pp. 171–181.

    Article  CAS  PubMed  Google Scholar 

  18. Bai, X.G., Chen, J.H., Kong, X.X., Todd, C.D., Yang, Y.P., Hu, X.Y., and Li, D.Z., Carbon monoxide enhances the chilling tolerance of recalcitrant Baccaurea ramiflora seeds via nitric oxide-mediated glutathione homeostasis, Free Radic. Biol. Med., 2012, vol. 53, pp. 710–720.

    Article  CAS  PubMed  Google Scholar 

  19. Li, X.Y., Wang, X.F., Lu, L.F., Yin, B., Zhang, M., and Cui, X.M., Effects of exogenous nitric oxide on ascorbate–glutathione cycle in tomato seedlings roots under copper stress, Chinese J. Appl. Ecol., 2013, vol. 24, pp. 1023–1030.

    Google Scholar 

  20. Durzan, D.J. and Pedroso, M.C., Nitric oxide and reactive nitrogen oxide species in plants, Biotechnol. Genet. Eng. Rev., 2002, vol. 19, pp. 293–338.

    Article  CAS  PubMed  Google Scholar 

  21. El-Shabrawi, H., Kumar, B., Kaul, T., Reddy, M.K., Singla-Pareek, S.L., and Sopory, S.K., Redox homeostasis, antioxidant defense, and methylglyoxal detoxification as markers for salt tolerance in Pokkali rice, Protoplasma, 2010, vol. 245, pp. 85–96.

    Article  CAS  PubMed  Google Scholar 

  22. Mellado, M., Contreras, R.A., González, A., Dennett, G., and Moenne, A., Copper-induced synthesis of ascorbate, glutathione and phytochelatins in the marine alga Ulva compressa (Chlorophyta), Plant Physiol. Biochem., 2012, vol. 51, pp. 102–108.

    Article  CAS  PubMed  Google Scholar 

  23. Chen, J.J., Zhou, J.M., and Goldsbrough, P.B., Characterization of phytochelatin synthase from tomato, Acta Physiol. Plant., 1997, vol. 101, pp. 165–172.

    Article  CAS  Google Scholar 

  24. Anjum, N.A., Ahmad, I., Mohmood, I., Pacheco, M., Duarte, A.C., Pereira, E., Umar, S., Ahmad, A., Khan, N.A., Iqbal, M., and Prasad, M.N.V., Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids — a review, Environ. Exp. Bot., 2012, vol. 75, pp. 307–324.

    CAS  Google Scholar 

  25. Alosi, M.C., Melroy, D.L., and Park, R.B., The regulation of gelation of phloem exudate from Cucurbita fruit by dilution, glutathione, and glutathione reductase, Plant Physiol., 1988, vol. 86, pp. 1089–1094.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Seth, C.S., A review on mechanisms of plant tolerance and role of transgenic plants in environmental cleanup, Bot. Rev., 2012, vol. 78, pp. 32–62.

    Article  Google Scholar 

  27. Chien, H.F., Lin, C.C., Wang, J.W., Chen, C.T., and Kao, C.H., Changes in ammonium ion content and glutamine synthetase activity in rice leaves caused by excess cadmium are a consequence of oxidative damage, J. Plant Growth Regul., 2002, vol. 36, pp. 41–47.

    Article  CAS  Google Scholar 

  28. Ali, H., Khan, E., and Sajad, M.A., Phytoremediation of heavy metals–concepts and applications, Chemosphere, 2013, vol. 91, pp. 869–881.

    Article  CAS  PubMed  Google Scholar 

  29. Innocenti, G., Pucciariello, C., Le Gleuher, M., Hopkins, J., de Stefano, M., Delledonne, M., Puppo, A., Baudouin, E., and Frendo, P., Glutathione synthesis is regulated by nitric oxide in Medicago truncatula roots, Planta, 2007, vol. 225, pp. 1597–1602.

    Article  CAS  PubMed  Google Scholar 

  30. Noctor, G., Mhamdi, A., Chaouch, S., Han, Y., Neukermans, J., Marquez-Garcia, B., Queval, G., and Foyer, C.H., Glutathione in plants: an integrated overview, Plant Cell Environ., 2012, vol. 35, pp. 454–484.

    Article  CAS  PubMed  Google Scholar 

  31. Xiong, J., Fu, G.F., Tao, L.X., and Zhu, C., Roles of nitric oxide in alleviating heavy metal toxicity in plants, Arch. Biochem. Biophys., 2010, vol. 497, pp. 13–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Yu, S.X., Zhang, M. et al. Exogenous nitric oxide-mediated GSH-PC synthesis pathway in tomato under copper stress. Russ J Plant Physiol 62, 349–359 (2015). https://doi.org/10.1134/S1021443715030188

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443715030188

Keywords

Navigation