Skip to main content
Log in

Reproductive properties of diatoms significant for their cultivation and biotechnology

  • Reviews
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

An Erratum to this article was published on 29 April 2015

Abstract

Unicellular algae and diatoms (Bacillariophyta) in particular, have attracted increasing attention as the objects of biotechnology. Diatoms are known to produce mucopolysaccharides, fats, and fat-like substances suitable for production of biodiesel, unusual pigments (e. g., marennine), and nanosized siliceous structures. It should be noted that only few diatom species out of great number living on the Earth are used in biotechnology. About 100000 species of diatoms occur in nature. The use of diatoms in biotechnology is restricted by little-studied life cycle and biology of reproduction. This review summarizes data on biological properties of diatoms, which should be taken into account when they are used as the objects of culturing and particularly as clones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lebeau, T. and Robert, J.-M., Diatom cultivation and biotechnologically relevant products, Appl. Microbiol. Biotech, 2003, vol. 60, pp. 612–632.

    Article  CAS  Google Scholar 

  2. Mata, T.M., Martins, A.A., and Caetano, N.S., Microalgae for biodiesel production and other applications: a review, Renew. Sust. Energy Rev., 2010, vol. 14, pp. 217–232.

    Article  CAS  Google Scholar 

  3. Mostafa, S.S.M., Microalgal biotechnology: prospects and applications, Plant Sci., 2012, vol. 12, pp. 275–314.

    Google Scholar 

  4. Mann, D.G., The species concept in diatoms. Phycological reviews 18, Phycologia, 1999, vol. 38, pp. 437–495.

    Article  Google Scholar 

  5. Mann, D.G. and Vanormelingen, P., An inordinate fondness? The number, distributions and origins of diatom species, J. Euk. Microbiol., 2013, vol. 60, pp. 414–420.

    Article  PubMed  Google Scholar 

  6. Björn, L.O. and Cronberg, G., Diatoms: their strange evolution and remarkable properties, Acta Biol. Slovenica, 2009, vol. 52, pp. 33–40.

    Google Scholar 

  7. Archibald, J.M., The puzzle of plastid evolution, Curr. Biol., 2009, vol. 19, pp. R81–R88.

    Article  CAS  PubMed  Google Scholar 

  8. Mock, T. and Medlin, L.K., Genomics and genetics of diatoms, Genomic Insights into the Biology of Alga. Advances in Botanical Research, Gwenaël Piganeau, Ed., 2012, vol. 64, pp. 245–284.

    Article  Google Scholar 

  9. Moustafa, A., Beszteri, B., Maier, U.G., Bowler, C., Valentin, K., and Bhattacharya, D., Genomic footprints of a cryptic plastid endosymbiosis in diatoms, Science, 2009, vol. 324, pp. 1724–1726.

    Article  CAS  PubMed  Google Scholar 

  10. Bowler, C., Allen, A.E., Badger, J.H., Grimwood, J., Jabbari, K., Kuo, A., Maheswari, U., Martens, C., Maumus, F., Otillar, R.P., Rayko, E., Salamov, A., Vandepoele, K., Beszteri, B., Gruber, A., Heijde, M., Katinka, M., Mock, T., Valentin, K., Verret, F., Berges, J.A., Brownlee, C., Cadoret, J.-P., Chiovitti, A., Choi, C.J., Coesel, S., de Martino, A., Detter, J.C., Durkin, C., Falciatore, A., Fournet, J., Haruta, M., Huysman, M.J.J., Jenkins, B.D., Jiroutova, K., Jorgensen, R.E., Joubert, Y., Kaplan, A., Kröger, N., Kroth, P.G., la Roche, J., Lindquist, E., Lommer, M., Martin-Jézéquel, V., Lopez, P.J., Lucas, S., Mangogna, M., McGinnis, K., Medlin, L.K., Montsant, A., Oudot-Le Secq, M.-P., Napoli, C., Obornik, M., Schnitzler-Parker, M., Petit, J.-L., Porcel, B.M., Poulsen, N., Robison, M., Rychlewski, L., Rynearson, T.A., Schmutz, J., Shapiro, H., Siaut, M., Stanley, M., Sussman, M.R., Taylor, A.R., Vardi, A., von Dassow, P., Vyverman, W., Willis, A., Wyrwicz, L.S., Rokhsar, D.S., Weissenbach, J., Armbrust, E.V., Green, B.R., van de Peer, Y., and Grigoriev, I.V., The Phaeodactylum genome reveals the evolutionary history of diatom genomes, Nature, 2008, vol. 456, pp. 239–244.

    Article  CAS  PubMed  Google Scholar 

  11. Geitler, L., Reproduction and life history in diatoms, Bot. Rev., 1935, vol. 1, pp. 149–161.

    Article  Google Scholar 

  12. Drebes, G., Sexuality, The Biology of Diatoms. Botanical Monographs 13, Werner, D., Ed., Oxford, UK: Blackwell, 1977, vol. 13, pp. 250–283.

    Google Scholar 

  13. Round, F.E., Crawford, R.M., and Mann, D.G., The Diatoms. Biology and Morphology of the Genera, Cambridge: Cambridge University Press, 1990.

    Google Scholar 

  14. Roshchin, A.M., Zhiznennye tsikly diatomovykh vodoroslei (The Life Cycles of Diatoms), Kiev: Nauk. dumka, 1994.

    Google Scholar 

  15. Edlund, M.B. and Stoermer, E.F., Ecological, evolutionary, and systematic significance of diatom life histories, J. Phycol., 1997, vol. 33, pp. 897–918.

    Article  Google Scholar 

  16. Davidovich, N.A., Species specific sizes and size range of sexual reproduction in diatoms, Proc. 16th Int. Diatom Symp. (Athens and Aegean Islands, Aug. 25–Sept. 1, 2000), Athens: Univ. Athens, 2001, pp. 191–196.

    Google Scholar 

  17. Chepurnov, V.A., Mann, D.G., Sabbe, K., and Vyverman, W., Experimental studies on sexual reproduction in diatoms, Int. Rev. Cytol., 2004, vol. 237, pp. 91–154.

    Article  CAS  PubMed  Google Scholar 

  18. Amato, A., Diatom reproductive biology: living in a crystal cage, Int. J. Plant Reprod. Biol., 2010, vol. 2, pp. 1–10.

    Google Scholar 

  19. Mann, D.G., Size and sex, The Diatom World, Cellular Origin, Life in Extreme Habitats and Astrobiology, Seckbach, J., Kociolek, J.P., Eds., Dordrecht: Springer Science + Business Media, 2011, vol. 19, pp. 145–166.

    Google Scholar 

  20. Rose, D.T. and Cox, E.J., Some diatom species do not show a gradual decrease in cell size as they reproduce, Fundam. Appl. Limnol., 2013, vol. 182, pp. 117–122.

    Article  Google Scholar 

  21. Pfitzer, E., Über den bau und Zeilteilung der Diatomeen, Bot. Z., 1869, vol. 27, pp. 774–776.

    Google Scholar 

  22. MacDonald, J.D., On the structure of the diatomaceous frustule, and its genetic cycle, Ann. Mag. Nat. Hist., Ser. 4, 1869, vol. 3, pp. 1–8.

    Google Scholar 

  23. Round, F.E., The problem of reduction of cell size during diatom cell division, Nova Hedwigia, 1972, vol. 23, pp. 291–303.

    Google Scholar 

  24. Geitler, L., Der formwechsel der pennaten Diatomeen (Kieselalgen), Arch. Protistenkunde, 1932, vol. 78, pp. 1–226.

    Google Scholar 

  25. Davidovich, N.A., Sexual heterogeneity in clones of Nitzschia longissima (Bréb.) Ralfs (Bacillariophyta), Algologiya, 2002, vol. 12, no. 3, pp. 279–289.

    Google Scholar 

  26. Davidovich, N.A., Inheritance of sex in obligate dioecious variety Nitzschia longissima (Bréb.) Ralfs (Bacillariophyta) under intraclonal reproduction, Algologiya, 2005, vol. 15, no. 4, pp. 385–398.

    Google Scholar 

  27. Davidovich, N.A. and Davidovich, O.I., Sexual reproduction and the system of hybridization in Tabularia tabulate (C. Agardh) Snoeijs (Bacillariophyta), Algologiya, 2010, vol. 20, no. 4, pp. 385–405.

    Google Scholar 

  28. Podunay, Yu.A., Davidovich, O.I., and Davidovich, N.A., Mating system and two types of gametogenesis in the fresh water diatom Ulnaria ulna (Bacillariophyta), Algologia, 2014, vol. 24, no. 1, pp. 3–19.

    Article  Google Scholar 

  29. Davidovich, N.A., Kaczmarska, I., and Ehrman, J.M., The sexual structure of a natural population of the diatom Nitzschia longissima (Bréb.) Ralfs, Proc. 18th Int. Diatom Symp. (Miedzyzdroje, Poland, Sept. 2–7, 2004), Bristol: Biopress, 2006, pp. 27–40.

    Google Scholar 

  30. Kaczmarska, I., Ehrman, J.M., Moniz, M.B.J., and Davidovich, N., Phenotypic and genetic structure of interbreeding populations of the diatom Tabularia fasciculate (Bacillariophyta), Phycologia, 2009, vol. 48, pp. 391–403.

    Article  CAS  Google Scholar 

  31. Chepurnov, V.A., Chaerle, P., Vanhoutte, K., and Mann, D.G., How to breed diatoms: examination of two species with contrasting reproductive biology, The Science of Algal Fuels: Phycology, Geology, Biophotonics, Genomics, and Nanotechnology. Cellular Origin, Life in Extreme Habitats and Astrobiology, Gordon, R., Seckbach, J., Eds., Dordrecht: Springer Science + Business Media, 2012, vol. 25, pp. 323–340.

    Chapter  Google Scholar 

  32. Kociolek, J.P. and Stoermer, E.F., Chromosome numbers in diatoms: a review, Diatom Res., 1989, vol. 4, pp. 47–54.

    Article  Google Scholar 

  33. Sedova, T.V., Kariologiya vodoroslei (Karyology of Algae), St. Petersburg: Nauka, 1996.

    Google Scholar 

  34. Mann, D.G., Patterns of sexual reproduction in diatoms, Proc. 12th Int. Diatom Symp. (Renesse, Netherlands, Aug. 30–Sept. 5, 1992), Belgium: Kluwer, 1993, vol. 1, pp. 11–20.

    Google Scholar 

  35. Davidovich, N.A., Kaczmarska, I., and Ehrman, J.M., Heterothallic and homothallic sexual reproduction in Tabularia fasciculate (Bacillariophyta), Fottea, 2010, vol. 10, pp. 251–266.

    Article  Google Scholar 

  36. Geitler, L., Auxosporenbildung und systematik bei pennaten diatomeen und die cytologie von Cocconeissippen, Österr. Bot. Z., 1973, vol. 122, pp. 299–321.

    Article  Google Scholar 

  37. Mizuno, M., Evolution of meiotic patterns of oogenesis and spermatogenesis in centric diatoms, Phycol. Res., 2006, vol. 54, pp. 57–64.

    Article  Google Scholar 

  38. Mizuno, M., Evolution of centric diatoms inferred from patterns of oogenesis and spermatogenesis, Phycol. Res., 2008, vol. 56, pp. 156–165.

    Article  CAS  Google Scholar 

  39. Chepurnov, V.A., Chaerle, P., Roef, L., Meirhaeghe, A., and Vanhoutte, K., Classical breeding in diatoms: scientific background and practical perspectives, The Diatom World, Cellular Origin, Life in Extreme Habitats and Astrobiology, Seckbach, J., Kociolek, J.P., Eds., Dordrecht: Springer Science + Business Media, 2011, vol. 19, pp. 171–194.

    Google Scholar 

  40. Roshchin, A.M. and Chepurnov, V.A., Dioecy and monoecy in the pennate diatoms (with reference to the centric taxa), Proc. 14th Int. Diatom Symp. (Tokyo, Japan, September 2–8, 1996), Koenigstein: Koeltz Sci. Books, 1999, pp. 241–261.

    Google Scholar 

  41. Apt, K.E., Grossman, A.R., and Kroth-Pancic, P.G., Stable nuclear transformation of the diatom Phaeodactylum tricornutum, Mol. Gen. Genet., 1996, vol. 252, pp. 572–579.

    CAS  PubMed  Google Scholar 

  42. Poulsen, N., Chesley, P.M., and Kröger, N., Molecular genetic manipulation of the diatom Thalassiosira pseudonana (Bacillariophyceae), J. Phycol., 2006, vol. 42, pp. 1059–1065.

    Article  Google Scholar 

  43. Poulsen, N., Berne, C., Spain, J., and Kröger, N., Silica immobilization of an enzyme through genetic engineering of the diatom Thalassiosira pseudonana, Angew. Chem., Int. Ed. Engl., 2007, vol. 46, pp. 1843–1846.

    Article  CAS  Google Scholar 

  44. Neuville, D. and Daste, P., Observations préliminaires concernant l’auxosporulation chez la diatomée Navicula ostrearia (Gaillon) Bory en culture in vitro, C. R. Acad. Sci. (Paris), Série D, 1975, vol. 281, pp. 1753–1756.

    Google Scholar 

  45. Neuville, D. and Daste, P., Observations concernant les phases de l’auxosporulation chez la diatomée Navicula ostrearia (Gaillon) Bory en culture in vitro, C. R. Acad. Sci. (Paris), Serie D, 1979, vol. 288, pp. 1496–1498.

    Google Scholar 

  46. Davidovich, N.A., Mouget, J.-L., and Gaudin, P., Heterothallism in the pennate diatom Haslea ostrearia (Bacillariophyta), Eur. J. Phycol., 2009, vol. 44, pp. 251–261.

    Article  CAS  Google Scholar 

  47. Davidovich, N.A., Photoregulation of sexual reproduction in Bacillariophyta (review), Algologiya, 2002, vol. 12, no. 2, pp. 259–272.

    Google Scholar 

  48. Mouget, J.-L., Gastineau, R., Davidovich, O., Gaudin, P., and Davidovich, N.A., Light is a key factor in triggering sexual reproduction in the pennate diatom Haslea ostrearia, FEMS Microbiol. Ecol., 2009, vol. 69, pp. 194–201.

    Article  CAS  PubMed  Google Scholar 

  49. Shorenko, K.I., Davidovich, O.I., and Davidovich, N.A., Taxonomy, reproduction and distribution in Nitzschia longissima (Bréb.) Grunow (Bacillariophyta), Algologiya, 2013, vol. 23, no. 2, pp. 113–137.

    Article  Google Scholar 

  50. Hiltz, M., Bates, S.S., and Kaczmarska, I., Effect of light: dark cycles and cell apical length on the sexual reproduction of the pennate diatom Pseudo-nitzschia multiseries (Bacillariophyceae) in culture, Phycologia, 2000, vol. 39, pp. 59–66.

    Article  Google Scholar 

  51. Armbrust, E.V., The life of diatoms in the world’s oceans, Nature, 2009, vol. 459, pp. 185–192.

    Article  CAS  PubMed  Google Scholar 

  52. Armbrust, E.V., Berges, J.A., Bowler, C., Green, B.R., Martinez, D., Putnam, N.H., Zhou, S.G., Allen, A.E., Apt, K.E., Bechner, M., Brzezinski, M.A., Chaal, B.K., Chiovitti, A., Davis, A.K., Demarest, M.S., Detter, J.C., Glavina, T., Goodstein, D., Hadi, M.Z., Hellsten, U., Hildebrand, M., Jenkins, B.D., Jurka, J., Kapitonov, V.V., Kröger, N., Lau, W.W., Lane, T.W., Larimer, F.W., Lippmeier, J.C., Lucas, S., Medina, M., Montsant, A., Obornik, M., Parker, M.S., Palenik, B., Pazour, G.J., Richardson, P.M., Rynearson, T.A., Saito, M.A., Schwartz, D.C., Thamatrakoln, K., Valentin, K., Vardi, A., Wilkerson, F.P., and Rokhsar, D.S., The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism, Science, 2004, vol. 306, pp. 79–86.

    Article  CAS  PubMed  Google Scholar 

  53. Li, S., Pan, K., Zhu, B., and Zhang, L., Nuclear transition between the conjunction cells of Phaeodactylum tricornutum Bohlin (Bacillariophyta), J. Ocean Univ. China, 2012, vol. 11, pp. 383–388.

    Article  CAS  Google Scholar 

  54. Casteleyn, G., Chepurnov, V.A., Leliaert, F., Mann, D.G., Bates, S.S., Lundholm, N., Rhodes, L., Sabbe, K., and Vyverman, W., Pseudo-nitzschia pungens (Bacillariophyceae): a cosmopolitan diatom species? Harmful Algae, 2008, vol. 7, pp. 241–257.

    Article  CAS  Google Scholar 

  55. Evans, K.M., Chepurnov, V.A., Sluiman, H.J., Thomas, S.J., Spears, B.M., and Mann, D.G., Highly differentiated populations of the freshwater diatom Sellaphora capitata suggest limited dispersal and opportunities for allopatric speciation, Protist, 2009, vol. 160, pp. 386–396.

    Article  PubMed  Google Scholar 

  56. Poulíková, A., Veselá, J., Neustupa, J., and Skaloud, P., Pseudocryptic diversity versus cosmopolitanism in diatoms: a case study on Navicula cryptocephala Kütz. (Bacillariophyceae) and morphologically similar taxa, Protist, 2010, vol. 161, pp. 353–369.

    Article  Google Scholar 

  57. Vyverman, W., Verleyen, E., Sabbe, K., Vanhoutte, K., Sterken, M., Hodgson, D.A., Mann, D.G., Juggins, S., van de Vijver, B., Jones, V., Flower, R., Roberts, D., Chepurnov, V.A., Kilroy, C., Vanormelingen, P., and de Wever, A., Historical processes constrain patterns in global diatom diversity, Ecology, 2007, vol. 88, pp. 1924–1931.

    Article  PubMed  Google Scholar 

  58. Kooistra, W.H.C.F., Sarno, D., Balzano, S., Gu, H., Andersen, R.A., and Zingone, A., Global diversity and biogeography of Skeletonema species (Bacillariophyta), Protist, 2008, vol. 159, pp. 177–193.

    Article  CAS  PubMed  Google Scholar 

  59. Kulikovskiy, M.S., Lange-Bertalot, H., Metzeltin, D., and Witkowski, A., Lake Baikal: hotspot of endemic diatoms, Iconographia Diatomologica, 2012, vol. 23, pp. 7–608.

    Google Scholar 

  60. Kermarrec, L., Bouchez, A., Rimet, F., and Humbert, J.F., First evidence of the existence of semicryptic species and of a phylogeographic structure in the Gomphonema parvulum (Kützing) Kützing complex (Bacillariophyta), Protist, 2013, vol. 164, pp. 686–705.

    Article  PubMed  Google Scholar 

  61. Kulikovskiy, M.S. and Kuznetsova, I.V., Biogeografiya presnovodnyh Bacillariophyta. Osnovnye kontseptsii i podhody. (Biogeography of freshwater Bacillariophyta. 1. Basic concepts and approaches), Algologiya, 2014, vol. 24, no. 2, pp. 125–146.

    Article  Google Scholar 

  62. Kulikovskiy, M.S. and Kociolek, J.P., The diatom genus Gomphonema Ehrenberg in lake Baikal. I. Morphology and taxonomic history of two endemic species, Nova Hedwigia, Beiheft, 2014, vol. 143, pp. 507–518.

    Google Scholar 

  63. Amato, A., Kooistra, W.H.C.F., Levialdi Ghiron, J.H., Mann, D.G., Pröschold, T., and Montresor, M., Reproductive isolation among sympatric cryptic species in marine diatoms, Protist, 2007, vol. 158, pp. 193–207.

    Article  CAS  PubMed  Google Scholar 

  64. Rimet, F., Trobajo, R., Mann, D.G., Kermarrec, L., Franc, A., Domaizon, I., and Bouchez, A., When is sampling complete? The effects of geographical range and marker choice on perceived diversity Nitzschia palea (Bacillariophyta), Protist, 2014, vol. 165, pp. 245–259.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Davidovich.

Additional information

Original Russian Text © N.A. Davidovich, O.I. Davidovich, Yu.A. Podunai, K.I. Shorenko, M.S. Kulikovskii, 2015, published in Fiziologiya Rastenii, 2015, Vol. 62, No. 2, pp. 167–175.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davidovich, N.A., Davidovich, O.I., Podunai, Y.A. et al. Reproductive properties of diatoms significant for their cultivation and biotechnology. Russ J Plant Physiol 62, 153–160 (2015). https://doi.org/10.1134/S1021443715020041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443715020041

Keywords

Navigation