Skip to main content
Log in

Seed carotenoids: Synthesis, diversity, and functions

  • Reviews
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Data on synthesis, physicochemical properties, and functions of carotenoids in developing and dormant seeds are reviewed. During seed ripening carotenoids are involved in photosynthesis by performing light-harvesting and protective functions specific for photosynthesizing tissues; they also serve as ABA precursors. In dormant seeds carotenoids are located in the plastids where they improve the structural integrity of membranes and protect nutrient substances against destruction. The role of carotenoids as lipophilic antioxidants is considered, and the mechanisms of carotenoid protective action against free radicals produced during seed aging are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Car:

carotenoids

CCD:

carotenoid cleavage dioxygenases

Chl:

chlorophyll(s)

IPP:

isopentenyl pyrophosphate

ROS:

reactive oxygen species

References

  1. Wackenroder, H.W.F., Über das oleum radicis Dauci aetherum, das Carotin, den Carotenzucker und den officinellen succus Dauci; so wie auch über das Mannit, welches in dem Möhrensafte durch eine besondere Art der Gährung gebildet wird, Geigers Mag. Pharm., 1831, vol. 33, pp. 144–172.

    Google Scholar 

  2. Berzelius, J.J., Über die gelbe Farbe der Blätter im Herbste, Ann. Pharm., 1837, vol. 21, pp. 257–262.

    Article  Google Scholar 

  3. Tswett, M., Über den makro- und mikrochemischen Nachweis des Carotins, Ber. Dtsc. Bot. Ges., 1911, vol. 29, pp. 630–636.

    CAS  Google Scholar 

  4. Cuttriss, A.J. and Pogson, B.J., Carotenoids, Plant Pigments and Their Manipulation, Davies, K.M., Ed., Boca Raton: CRC, 2004, pp. 57–91.

    Google Scholar 

  5. Cazzonelli, C.I., Carotenoids in nature: insights from plants and beyond, Funct. Plant Biol., 2011, vol. 38, pp. 833–847.

    Article  CAS  Google Scholar 

  6. Krasnovsky, A.A., Singlet molecular oxygen: mechanisms of formation and deactivation pathways in the photosynthetic systems, Biofizika, 1994, vol. 39, pp. 236–250.

    Google Scholar 

  7. Edge, R. and Truscott, G., Properties of carotenoid radicals and excited states and their potential role in biological systems, Carotenoids: Physical, Chemical, and Biological Functions and Properties, Landrum, J.T., Ed., Dordrecht: Kluwer, 2010, pp. 283–307.

    Google Scholar 

  8. Jahns, P. and Holzwarth, A.R., The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II, Biochim. Biophys. Acta, 2012, vol. 1817, pp. 182–193.

    Article  CAS  PubMed  Google Scholar 

  9. Shumskaya, M. and Wurtzela, E.T., The carotenoid biosynthetic pathway: thinking in all dimensions, Plant Sci., 2013, vol. 208, pp. 58–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Solovchenko, A.E., Physiology and adaptive significance of secondary carotenogenesis in green microalgae, Russ. J. Plant Physiol., 2013, vol. 60, pp. 1–13.

    Article  CAS  Google Scholar 

  11. Goodwin, T.W., The Biochemistry of the Carotenoids, London: Chapman and Hall, 1980, vol. 1.

    Book  Google Scholar 

  12. Howitt, C.A. and Pogson, B.J., Carotenoids accumulation and function in seeds and non-green tissues, Plant Cell Environ., 2006, vol. 29, pp. 435–445.

    Article  CAS  PubMed  Google Scholar 

  13. Hernández-Marin, E., Barbosa, A., and Martínez, A., The metal cation chelating capacity of astaxanthin. Does this have any influence on antiradical activity? Molecules, 2012, vol. 17, pp. 1039–1054.

    Article  PubMed  Google Scholar 

  14. Strzałka, K., Kostecka-Gugała, A., and Latowski, D., Carotenoids and environmental stress in plants: significance of carotenoid-mediated modulation of membrane physical properties, Russ. J. Plant Physiol., 2003, vol. 50, pp. 168–172.

    Article  Google Scholar 

  15. Hoekstra, F.A. and Golovina, E.A., Membrane behavior during dehydration: implications for desiccation tolerance, Russ. J. Plant Physiol., 1999, vol. 46, pp. 295–306.

    CAS  Google Scholar 

  16. Rodrigues-Amaya, D.B. and Kimura, M., Handbook for Carotenoids Analysis, Washington, DC: Harvest Plus, 2004.

    Google Scholar 

  17. Lichtenthaler, H.K., Schwender, J., Disch, A., and Rohmer, M., Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway, FEBS Lett., 1997, vol. 400, pp. 271–274.

    Article  CAS  PubMed  Google Scholar 

  18. Ladygin, V.G., Biosynthesis of Carotenoids in Plastids of Plants. Plastids, Biochemistry (Moscow), 2000, vol. 65, pp. 1113–1129.

    CAS  PubMed  Google Scholar 

  19. Hannoufa, A. and Hossain, Z., Regulation of carotenoid accumulation in plants, Biocat. Agric. Biotechnol., 2012, vol. 1, no. 3, pp. 198–202.

    CAS  Google Scholar 

  20. Bick, J.A. and Lange, B.M., Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: unidirectional transport of intermediates across the chloroplast envelope membrane, Arch. Biochem. Biophys., 2003, vol. 415, no. 2, pp. 146–154.

    Article  CAS  PubMed  Google Scholar 

  21. Farre, G., Bai, C., Twyman, R.M., Capell, T., Christou, P., and Zhu, C., Nutritious crops producing multiple carotenoids — a metabolic balancing act, Trends Plant Sci., 2011, vol. 16, no. 10, pp. 532–540.

    Article  CAS  PubMed  Google Scholar 

  22. Armstrong, G.A. and Hearst, J.E., Genetics and molecular biology of carotenoid pigment biosynthesis, FASEB J., 1996, vol. 10, pp. 228–237.

    CAS  PubMed  Google Scholar 

  23. Britton, G., Overview of carotenoid biosynthesis, Carotenoids Biosynthesis and Metabolism, Britton, G., Liaaen-Jensen, S., and Pfander, H., Eds., Basel: Birkhäuser Verlag, 1998, pp. 13–147.

    Google Scholar 

  24. Sun, Z.R., Gantt, E., and Cunningham, F.X., Cloning and functional analysis of the β-carotene hydroxylase of Arabidopsis thaliana, J. Biol. Chem., 1996, vol. 271, pp. 24 349–24 352.

    Article  CAS  Google Scholar 

  25. Hirschberg, J., Carotenoid biosynthesis in flowering plants, Curr. Opin. Plant Biol., 2001, vol. 4, pp. 210–218.

    Article  CAS  PubMed  Google Scholar 

  26. Tian, L., Musetti, V., Kim, J., Magallanes-Lundback, M., and Della Penna, D., The Arabidopsis LUT1 locus encodes a member of the cytochrome P450 family that is required for carotenoid epsilon-ring hydroxylation activity, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 402–407.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Jahns, P., Latowski, D., and Strzałka, K., Mechanism and regulation of the violaxanthin cycle: the role of antenna proteins and membrane lipids, Biochim. Biophys. Acta, Bioenerg., 2009, vol. 1787, no. 1, pp. 3–14.

    Article  CAS  Google Scholar 

  28. Li, Z.H., Matthews, P.D., Burr, B., and Wurtzel, E.T., Cloning and characterization of a maize cDNA encoding phytoene desaturase, an enzyme of the carotenoid biosynthetic pathway, Plant Mol. Biol., 1996, vol. 30, pp. 269–279.

    Article  CAS  PubMed  Google Scholar 

  29. Buckner, B., Miguel, P.S., Janick-Buckner, D., and Bennetzen, J.L., The Y1 gene of maize codes for phytoene synthase, Genetics, 1996, vol. 143, pp. 479–488.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Gallagher, C.E., Matthews, P.D., Li, F.Q., and Wurtzel, E.T., Gene duplication in the carotenoid biosynthetic pathway preceded evolution of the grasses, Plant Physiol., 2004, vol. 135, pp. 1776–1783.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Burkhardt, P.K., Beyer, P., Wünn, J., Klöti, A., Armstrong, G.A., Schledz, M., von Lintig, J., and Potrykus, I., Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis, Plant J., 1997, vol. 11, pp. 1071–1078.

    Article  CAS  PubMed  Google Scholar 

  32. Matthews, P.D., Luo, R.B., and Wurtzel, E.T., Maize phytoene desaturase and zeta-carotene desaturase catalyse a poly-Z desaturation pathway: implications for genetic engineering of carotenoid content among cereal crops, J. Exp. Bot., 2003, vol. 54, pp. 2215–2230.

    Article  CAS  PubMed  Google Scholar 

  33. Zandomeneghi, M., Festa, C., Carbonaro, L., Galleschi, L., Lenzi, A., and Calucci, L., Front-surface absorbance spectra of wheat flour: determination of carotenoids, J. Agric. Food Chem., 2000, vol. 48, pp. 2216–2221.

    Article  CAS  PubMed  Google Scholar 

  34. Hentschel, V., Kranl, K., Hollmann, J., Lindhauer, M.G., Bohm, V., and Bitsch, R., Spectrophotometric determination of yellow pigment content and evaluation of carotenoids by high-performance liquid chromatography in durum wheat grain, J. Agric. Food Chem., 2002, vol. 50, pp. 6663–6668.

    Article  CAS  PubMed  Google Scholar 

  35. Ye, S., Al-Babili, A., Klöti, J., Zhang, P., Lucca, P., and Potrykus, B.I., Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm, Science, 2000, vol. 287, pp. 303–305.

    Article  CAS  PubMed  Google Scholar 

  36. Paine, J.A., Shipton, C.A., Chaggar, S., Howells, R.M., Kennedy, M.J., Vernon, G., Wright, S.Y., Hinchliffe, E., Adams, J.L., Silverstone, A.L., and Drake, R., Improving the nutritional value of golden rice through increased pro-vitamin A content, Nat. Biotech., 2005, vol. 23, pp. 482–487.

    Article  CAS  Google Scholar 

  37. Matus, Z., Molnar, P., and Szabo, L.G., Main carotenoids in pressed seeds (Cucurbitae semen) of pumpkin (Cucurbita pepo var. styriaca), Acta Pharm. Hung., 1993, vol. 63, no. 5, pp. 247–256.

    CAS  PubMed  Google Scholar 

  38. Shewmaker, C.K., Sheehy, J.A., Daley, M., Colburn, S., and Ke, D.Y., Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects, Plant J., 1999, vol. 20, pp. 401–412.

    Article  CAS  PubMed  Google Scholar 

  39. Lindgren, L.O., Stålberg, K.G., and Hoglund, A., Seed-specific overexpression of an endogenous Arabidopsis phytoene synthase gene results in delayed germination and increased levels of carotenoids, chlorophyll, and abscisic acid, Plant Physiol., 2003, vol. 132, pp. 779–785.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Bulda, O.V., Rassadina, V.V., Alekseichuk, H.N., and Laman, N.A., Spectrophotometric measurement of carotenes, xanthophylls, and chlorophylls in extracts from plant seeds, Russ. J. Plant Physiol., 2008, vol. 55, pp. 544–551.

    Article  CAS  Google Scholar 

  41. Bouvier, F., Isner, J.-C., Dogbo, O., and Camara, B., Oxidative tailoring of carotenoids: a prospect towards novel functions in plants, Trends Plant Sci., 2005, vol. 10, no. 4, pp. 187–194.

    Article  CAS  PubMed  Google Scholar 

  42. Auldridge, M.E., McCarty, D.R., and Klee, H.J., Plant carotenoid cleavage oxygenases and their apocarotenoid products, Curr. Opin. Plant Biol., 2006, vol. 9, pp. 315–321.

    Article  CAS  PubMed  Google Scholar 

  43. Caris-Veyrat C., Formation of carotenoid oxygenated cleavage products, Carotenoids: Physical, Chemical, and Biological Functions and Properties, Landrum, J.T., Ed., Dordrecht: Kluwer, 2010, pp. 215–307.

    Google Scholar 

  44. Vogel, J.T., Walter, M.H., Giavalisco, P., Lytovchenko, A., Kohlen, W., Charnikhova, T., and Klee, H.J., SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato, Plant J., 2010, vol. 61, pp. 300–311.

    Article  CAS  PubMed  Google Scholar 

  45. Walter, M.H. and Strack, D., Carotenoids and their cleavage products: biosynthesis and functions, Nat. Prod. Rep., 2011, vol. 28, pp. 663–692.

    Article  CAS  PubMed  Google Scholar 

  46. Gomez-Roldan, V., Fermas, S., Brewer, P.B., Puech-Pagés, V., Dun, E.A., Pillot, J.P., Letisse, F., Matusova, R., Danoun, S., Portais, J.C., Bouwmeester, H., Bécard, G., Beveridge, C.A., Rameau, C., and Rochange, S.F., Strigolactone inhibition of shoot branching, Nature, 2008, vol. 455, pp. 189–194.

    Article  CAS  PubMed  Google Scholar 

  47. Tsuchiya, Y. and McCourt, P., Strigolactones: a new hormone with a past, Curr. Opin. Plant Biol., 2009, vol. 12, pp. 556–561.

    Article  CAS  PubMed  Google Scholar 

  48. Akiyama, K., Matsuzaki, K., and Hayashi, H., Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi, Nature, 2005, vol. 435, pp. 824–827.

    Article  CAS  PubMed  Google Scholar 

  49. Wise, R.R., The diversity of plastid form and function, The Structure and Function of Plastids, Wise, R.R. and Hoober, J.K., Eds., Dordrecht: Kluwer, 2006, pp. 3–26.

    Chapter  Google Scholar 

  50. Solymosi, K. and Schoefs, B., Etioplast and etio-chloroplast formation under natural conditions: the dark side of chlorophyll biosynthesis in angiosperms, Photosynth. Res., 2010, vol. 105, pp. 143–166.

    Article  CAS  PubMed  Google Scholar 

  51. Bartley, G. and Scolnik, P., Plant carotenoids: pigments for photoprotection, visual attraction and human health, Plant Cell, 1995, vol. 7, pp. 1027–1038.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Vishnevetsky, M., Ovadis, M., and Vainstein, A., Carotenoid sequestration in plants: the role of carotenoid-associated proteins, Trends Plant Sci., 1999, vol. 4, pp. 232–235.

    Article  PubMed  Google Scholar 

  53. Vishnevetsky, M., Ovadis, M., Zuker, A., and Vainstein, A., Molecular mechanisms underlying carotenogenesis in the chromoplast: multilevel regulation of carotenoid-associated genes, Plant J., 1999, vol. 20, pp. 423–431.

    Article  CAS  PubMed  Google Scholar 

  54. Kirk, J.T. and Tiliney-Bassett, R.A., Proplastids, etioplasts, amyloplasts, chromoplasts and other plastids, The Plastids: Their Chemistry, Structure, Growth and Inheritance, Kirck, S.T. and Tiliney-Bassett, R.A., Eds., Amsterdam: Elsevier/North-Holland Biomedical Press, 1978, pp. 217–239.

    Google Scholar 

  55. Fratianni, A., Irano, M., Panfili, G., and Acquistucci, R., Estimation of color of durum wheat. Comparison of WSB, HPLC, and reflectance colorimeter measurements, J. Agric. Food Chem., 2005, vol. 53, pp. 2373–2378.

    Article  CAS  PubMed  Google Scholar 

  56. Brehelin, C. and Kessler, F., The plastoglobule: a bag full of lipid biochemistry tricks, Photochem. Photobiol., 2008, vol. 84, pp. 1388–1394.

    Article  CAS  PubMed  Google Scholar 

  57. Merzlyak, M.N. and Solovchenko, A.E., Photostability of pigments in ripening apple fruit: a possible photoprotective role of carotenoids during plant senescence, Plant Sci., 2002, vol. 163, pp. 881–888.

    Article  CAS  Google Scholar 

  58. Nambara, E., Okamoto, M., Tatematsu, K., Yano, R., Seo, M., and Kamiya, Y., Abscisic acid and the control of seed dormancy and germination, Seed Sci. Res., 2010, vol. 20, pp. 675–689.

    Article  Google Scholar 

  59. Frey, A., Godin, B., Bonnet, M., Sotta, B., and Marion-Poll, A., Maternal synthesis of abscisic acid controls seed development and yield in Nicotiana plumbaginifolia, Planta, 2004, vol. 218, pp. 958–964.

    Article  CAS  PubMed  Google Scholar 

  60. Nambara, E. and Marion-Poll, A., Abscisic acid biosynthesis and catabolism, Annu. Rev. Plant Biol., 2005, vol. 56, pp. 165–185.

    Article  CAS  PubMed  Google Scholar 

  61. Boursiac, Y., Leran, S., Corratgé-Faillie, C., Gojon, A., Krouk, G., and Lacombe, B., ABA transport and transporters, Trends Plant Sci., 2012, vol. 18, pp. 325–333.

    Article  Google Scholar 

  62. Schwartz, S.H. and Zeevaart, J.A.D., Abscisic acid biosynthesis and metabolism, Plant Hormones: Biosynthesis, Signal Transduction, Action! Davies, P.J., Ed., Dordrecht: Kluwer, 2010, pp. 137–155.

    Chapter  Google Scholar 

  63. Rock, C.D., Heath, T.G., Gage, D.A., and Zeevaart, J.A.D., Abscisic alcohol is an intermediate in abscisic acid biosynthesis in a shunt pathway from abscisic aldehyde, Plant Physiol., 1991, vol. 97, pp. 670–676.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Maluf, M.P., Saab, I.N., Wurtzel, E.T., and Sachs, M.M., The viviparous12 maize mutant is deficient in abscisic acid, carotenoids, and chlorophyll synthesis, J. Exp. Bot., 1997, vol. 48, pp. 1259–1268.

    Article  CAS  Google Scholar 

  65. Yoshioca, T., Endo, T., and Satoh, S., Restoration of seed germination at supraoptimal temperatures by fluridone, an inhibitor of abscisic acid biosynthesis, Plant Cell Physiol., 1998, vol. 39, pp. 307–312.

    Article  Google Scholar 

  66. Thomson, A.J., Jackson, A.C., Symonds, R.C., Mulholland, B.J., Dadswell, A.R., Blake, P.S., Burbidge, A., and Taylor, I.B., Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes overproduction of abscisic acid, Plant J., 2000, vol. 23, pp. 363–374.

    Article  Google Scholar 

  67. Garello, G. and le Page-Degivry, M.T., Evidence for the role of abscisic acid in the genetic and environmental control of dormancy in wheat (Triticum aestivum L.), Seed Sci. Res., 1999, vol. 9, pp. 219–226.

    CAS  Google Scholar 

  68. McDonald, M.B., Seed deterioration: physiology, repair and assessment, Seed Sci. Technol., 1999, vol. 27, pp. 177–237.

    Google Scholar 

  69. Smolikova, G.N., Application of the method of accelerated aging for the evaluation of the tolerance of seeds to stresses, Vestn. St. Petersburg Gos. Univ., ser. 3, 2014, no. 2, pp. 82–93.

    Google Scholar 

  70. Nagel, M. and Börner, A., The longevity of crop seeds stored under ambient conditions, Seed Sci. Res., 2010, vol. 20, pp. 1–12.

    Article  Google Scholar 

  71. Walters, C., Hill, L.M., and Wheeler, L.G., Dying while dry: kinetics and mechanisms of deterioration in desiccation organisms, Integr. Comp. Biol., 2005, vol. 45, pp. 751–758.

    Article  PubMed  Google Scholar 

  72. Bailly, C., Active oxygen species and antioxidants in seed biology, Seed Sci. Res., 2004, vol. 14, pp. 93–107.

    Article  CAS  Google Scholar 

  73. Veselovsky, V.A. and Veselova, T.V., Lipid peroxidation, carbohydrate hydrolysis, and Amadori-Maillard reaction at early stages of dry seed aging, Russ. J. Plant Physiol., 2012, vol. 59, pp. 811–817.

    Article  CAS  Google Scholar 

  74. Hendry, G.A.F., Oxygen, free radical processes and seed longevity, Seed Sci. Res., 1993, vol. 3, pp. 141–153.

    Article  CAS  Google Scholar 

  75. Smolikova, G.N., Laman, N.A., and Boriskevich, O.V., Role of chlorophylls and carotenoids in seed tolerance to abiotic stressors, Russ. J. Plant Physiol., 2011, vol. 58, pp. 965–973.

    Article  CAS  Google Scholar 

  76. Skibsted, L.H., Carotenoids in antioxidant networks. Colorants or radical scavengers, J. Agric. Food Chem., 2012, vol. 60, pp. 2409–2417.

    Article  CAS  PubMed  Google Scholar 

  77. Solovchenko, A.E. and Merzlyak, M.N., Screening of visible and UV radiation as a photoprotective mechanism in plants, Russ. J. Plant Physiol., 2008, vol. 55, pp. 719–737.

    Article  CAS  Google Scholar 

  78. Yakovlev, M.S. and Zhukova, G.Ya., Pokrytosemennye rasteniya s zelenym i bestsvetnym zarodyshem (khloroi leikoembriofity) (Angiosperms with Green and Colorless Embryos: chloro- and leukoembryophytes), Leningrad: Nauka, 1973.

    Google Scholar 

  79. Puthur, J.T., Shackira, A.M., Saradhi, P.P., and Bartels, D., Chloroembryos: a unique photosynthesis system, J. Plant Physiol., 2013, vol. P, pp. 1131–1138.

    Article  Google Scholar 

  80. Ruuska, S.A., Schwender, J., and Ohlrogge, J.B., The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes, Plant Physiol., 2004, vol. 136, pp. 2700–2709.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Borisjuk, L., Nguyen, T.H., Neuberger, T., Rutten, T., Tschiersch, H., Claus, B., Feussner, I., Webb, A.G., Jakob, P., Weber, H., Wobus, U., and Rolletschek, H., Gradients of lipid storage, photosynthesis and plastid differentiation in developing soybean seeds, New Phytol., 2005, vol. 167, pp. 761–776.

    Article  CAS  PubMed  Google Scholar 

  82. Tschiersch, H., Borisjuk, L., Rutten, T., and Rolletschek, H., Gradients of seed photosynthesis and its role for oxygen balancing, Biosystems, 2011, vol. 103, pp. 302–308.

    Article  CAS  PubMed  Google Scholar 

  83. Mansfield, S.G. and Briarty, L.G., Cotyledon cell development in Arabidopsis thaliana during reserve deposition, Can. J. Bot., 1992, vol. 70, pp. 151–164.

    Article  Google Scholar 

  84. Johnson, R.W., Asokanthan, P.S., and Griffith, M., Water and sucrose regulate canola embryo development, Physiol. Plant., 1997, vol. 101, pp. 361–366.

    Article  CAS  Google Scholar 

  85. Ramel, F., Birtic, S., Cuine, S., Triantaphylides, C., Ravanat, J.-L., and Havaux, M., Chemical quenching of singlet oxygen by carotenoids in plants, Plant Physiol., 2012, vol. 158, pp. 1267–1278.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Smolikova.

Additional information

Original Russian Text © G.N. Smolikova, S.S. Medvedev, 2015, published in Fiziologiya Rastenii, 2015, Vol. 62, No. 1, pp. 3–16.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smolikova, G.N., Medvedev, S.S. Seed carotenoids: Synthesis, diversity, and functions. Russ J Plant Physiol 62, 1–13 (2015). https://doi.org/10.1134/S1021443715010136

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443715010136

Keywords

Navigation