Skip to main content
Log in

Effect of TiO2 nanoparticles on oxidative damage and antioxidant defense systems in chickpea seedlings during cold stress

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The effects of TiO2 nanoparticles (NPs) on physiologo-biochemical responses were studied in two chickpea (Cicer arietimun L.) genotypes differing in cold sensitivity (tolerant Sel11439 and sensitive ILC533) during cold stress (CS). The results showed that hydrogen peroxide and MDA contents and electrolyte leakage index (ELI) increased under CS conditions in both genotypes and that these damage indices were higher in ILC533 than in Sel11439 plants. In plants treated with TiO2 NPs, a decreased H2O2 level was accompanied by a decrease in the MDA content and ELI compared to control plants, and these changes occurred more effectively in Sel11439 than in ILC533 plants. The antioxidant enzymes were more effective in cell protection against CS in Sel11439 plants compared to ILC533 plants, as well as in plants treated with TiO2 NPs compared to control plants. The lipoxygenase activity was induced efficiently only in Sel11439 plants treated with TiO2 NPs during CS, probably indicating its role in stress response (which was confirmed by measuring allen oxide synthase activity). TiO2 NPs caused stability of chlorophyll and carotenoid contents during CS. Results suggest that TiO2 NPs confer an increased tolerance of chickpea plants to CS, decreasing the level of injuries and increasing the capacity of defense systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AOS:

allen oxide synthase

APX:

ascorbate peroxidase

CAT:

catalase

Chl:

chlorophyll

CS:

cold stress

ELI:

electrolyte leakage index

GPX:

guaiacol peroxidase

LOX:

lipoxygenase

NPs:

nanoparticles

PPO:

polyphenol oxidase

SOD:

superoxide dismutase

TiO2 :

titanium dioxide

References

  1. Heidarvand, L., Maali Amiri, R., Naghavi, M.R., Farayedi, Y., Sadeghzadeh, B., and Alizadeh, Kh., Physiological and morphological characteristics of chickpea accessions under low temperature stress, Russ. J. Plant Physiol., 2011, vol. 58, pp. 157–163.

    Article  CAS  Google Scholar 

  2. Gill, S.S. and Tuteja, N., Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, Plant Physiol. Biochem., 2010, vol. 48, pp. 909–930.

    Article  PubMed  CAS  Google Scholar 

  3. Feizi, H., Rezvani, Moghadam, P., Shahtahmassebi, N., and Fotovat, A., Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth, Biol. Trace Elem. Res., 2012, vol. 146, pp. 101–106.

    Article  PubMed  CAS  Google Scholar 

  4. Singh, D., Kumar, S., Singh, S.C., Lal, B., and Singh, N.B., Applications of liquid assisted pulsed laser ablation synthesized TiO2 nanoparticles on germination, growth and biochemical parameters of Brassica oleracea var. Capitata, Sci. Adv. Mather., 2012, vol. 4, pp. 522–531.

    Article  CAS  Google Scholar 

  5. Mohammadi, R., Maali-Amiri, R., and Abbasi, A., Effect of TiO2 nanoparticles on chickpea response to cold stress, Biol. Trace Elem. Res., 2013, vol. 152, pp. 403–410.

    Article  PubMed  CAS  Google Scholar 

  6. Khodakovskaya, M.V., de Silva, K., Biris, A.S., Dervishi, E., and Villagarcia, H., Carbon nanotubes induce growth enhancement of tobacco cells, ACS Nano, 2009, vol. 6, pp. 2128–2135.

    Article  Google Scholar 

  7. Hu, X., Jiang, M., Zhang, A., and Lu, J., Abscisic acidinduced apoplastic H2O2 accumulation up-regulates the activities of chloroplastic and cytosolic antioxidant enzymes in maize leaves, Planta, 2005, vol. 223, pp. 57–68.

    Article  PubMed  CAS  Google Scholar 

  8. Li, F.M., Zhao, W., Li, Y.Y., Tian, Z.J., and Wang, Z.Y., Toxic effects of nano-TiO2 on Gymnodinium breve, Environ. Sci., 2012, vol. 33, pp. 233–238.

    Google Scholar 

  9. Kang, H.M. and Saltveit, M.Z., Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid, Physiol. Plant., 2002, vol. 115, pp. 571–576.

    Article  PubMed  CAS  Google Scholar 

  10. Mantri, N.L., Ford, R., Tristan, E., Edwin, C., and Pang, C.K., Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought, BMC Genomics, 2007, vol. 8, pp. 303–317.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Heidarvand, L. and Maali-Amiri, R., Physio-biochemical and proteome analysis of chickpea in early phases of cold stress, J. Plant Physiol., 2013, vol. 170, pp. 459–469.

    Article  PubMed  CAS  Google Scholar 

  12. Nazari, M.R., Maali-Amiri, R., Mehraban, F.H., and Khaneghah, H.Z., Change in antioxidant responses against oxidative damage in black chickpea following cold acclimation, Russ. J. Plant Physiol., 2012, vol. 59, pp. 183–189.

    Article  CAS  Google Scholar 

  13. Bradford, M.M., Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  PubMed  CAS  Google Scholar 

  14. Axelroad, B., Cheesebrough, T.M., and Laasko, S., Lipoxigenase from soybeans, Methods Enzymol., 1981, vol. 71, pp. 441–451.

    Article  Google Scholar 

  15. Zimmermann, D.C. and Vick, B.A., Hydroperoxide isomerase: a new enzyme of lipid metabolism, Plant Physiol., 1970, vol. 46, pp. 445–450.

    Article  Google Scholar 

  16. Arnon, D.T., Copper enzymes in isolation chloroplast phenoloxidase in Beta vulgaris, Plant Physiol., 1949, vol. 24, pp. 1–15.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Laure, C., Laurette, J., Herlin-Boime, N., Khodja, H., Fayard, B., Flank, A.M., Brisset, F., and Carriere, M., Accumulation, translocation and impact of TiO2 nano-particles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase, Sci. Total Environ., 2012, vol. 431, pp. 197–208.

    Article  Google Scholar 

  18. Lei, Z., Minqyu, S., Xiao, W., Chao, L., Chunxiang, Q., Liang, C., Hao, H., Xiaoqing, L., and Fashui, H., Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation, Biol. Trace Elem. Res., 2008, vol. 121, pp. 69–79.

    Article  PubMed  Google Scholar 

  19. Kurepa, J., Paunesku, T., Vogt, S., Arora, H., Rabatic, B.M., Lu, J.J., Wanzer, M.B., Woloschak, G.E., and Smalle, J.A., Uptake and distribution of ultrasmall anatase TiO2 alizarin red S nanoconjugates in Arabidopsis thaliana, Nano Lett., 2010, vol. 10, pp. 2296–2302.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Nair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y., and Kumar, D.S., Nanoparticulate material delivery to plants, Plant Sci., 2010, vol. 179, pp. 154–163.

    Article  CAS  Google Scholar 

  21. Demin, I.N., Deryabin, A.N., Sinkevich, M.S., and Trunova, T.I., Insertion of cyanobacterial desA gene coding for δ12-acyl-lipid desaturase increases potato plant resistance to oxidative stress induced by hypothermia, Russ. J. Plant Physiol., 2008, vol. 55, pp. 639–648.

    Article  CAS  Google Scholar 

  22. Maali-Amiri, R., Yur’eva, N.O., Shimshilashvili, K.R., Goldenkova-Pavlova, I.V., Pchelkin, V.P., Kuznitsova, E.I., Tsydendambaev, V.D., Trunova, T.I., Los, D.A., Salehi, Jouzani, G., and Nosov, A.M., Expression of acyl-lipid delta12-desaturase gene in prokaryotic and eukaryotic cells and its effect on cold stress tolerance of potato, J. Integ. Plant Biol., 2010, vol. 52, pp. 289–297.

    Article  Google Scholar 

  23. Hong, F., Yang, F., Liu, C., Gao, Q., Wan, Z., Gu, F., Wu, C., Ma, Z., Zhou, J., and Yang, P., Influence of nano-TiO2 on the chloroplast aging of spinach under light, Biol. Trace Elem. Res., 2005, vol. 104, pp. 249–260.

    Article  PubMed  CAS  Google Scholar 

  24. Berger, S., Weichert, H., Porzel, A., Wasternack, C., Kühn, H., and Feussner, I., Enzymatic and non-enzymatic lipid peroxidation in leaf development, Biochim. Biophys. Acta, 2001, vol. 1533, pp. 266–276.

    Article  PubMed  CAS  Google Scholar 

  25. Pushpalatha, H.G., Sudisha, J., Geetha, N.P., Amruthesh, K.N., and Shekar Shetty, H., Thiamine seed treatment enhances LOX expression, promotes growth and induces downy mildew disease resistance in pearl millet, Biol. Plant., 2011, vol. 55, pp. 522–527.

    Article  CAS  Google Scholar 

  26. Wasternack, C., Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development, Ann. Bot., 2007, vol. 100, pp. 681–697.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Srivalli, B., Sharma, G., and Khanna-Chopra, R., Antioxidative defense system in an upland rice cultivar subjected to increasing intensity of water stress followed by recovery, Physiol. Plant., 2003, vol. 119, pp. 503–512.

    Article  CAS  Google Scholar 

  28. Yun, K.Y., Park, M.R., Mohanty, B., Herath, V., Xu, F., Mauleon, R., Wijaya, E., Bajic, V.B., Bruskiewich, R., and de los Reyes, B.G., Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress, BMC Plant Biol., 2010, vol. 10, p. 16.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hannah, M.A., Heyer, A.G., and Hincha, D.K., A global survey of gene regulation during cold acclimation in Arabidopsis thaliana, PLoS Genet., 2005, vol. 1: e26.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wei, C., Zhang, Y., Guo, J., Han, B., Yang, X., and Yuan, J., Effects of silica nanoparticles on growth and photosynthetic pigments contents of Scenedesmus obliquus, J. Environ. Sci., 2010, vol. 22, pp. 155–160.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Maali-Amiri.

Additional information

This text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, R., Maali-Amiri, R. & Mantri, N.L. Effect of TiO2 nanoparticles on oxidative damage and antioxidant defense systems in chickpea seedlings during cold stress. Russ J Plant Physiol 61, 768–775 (2014). https://doi.org/10.1134/S1021443714050124

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443714050124

Keywords

Navigation