Skip to main content
Log in

Exogenous nitric oxide promotes waterlogging tolerance as related to the activities of antioxidant enzymes in cucumber seedlings

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

We investigated the effects of exogenous sodium nitroprusside (SNP), a nitric oxide (NO) donor, on growth of cucumber (Cucumis sativus L., cv. Jinyou No.1) seedlings and antioxidant enzyme activities in cucumber leaves under waterlogging stress. The growth of cucumber seedlings was significantly inhibited when plants were exposed to waterlogging, whereas shoot spraying with SNP significantly alleviated the inhibition of growth from this type of stress: height, fresh and dry weights of the flooded plants increased obviously. Waterlogging also caused the activation of the antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX)), the reduction of the chlorophyll content, and the accumulation of MDA and protein in leaves. It was found that SNP treatment further potentiated the antioxidant enzyme activities and maintained the chlorophyll and protein content during the entire water-logging period; however, it reduced the MDA content. Thus, NO protects plants from oxidative damage and promotes growth by activation of antioxidant enzymes in leaves in an extent sufficient for the alleviation of membrane injury. However, exogenous NO had no significant effects on cucumber seedlings growth and antioxidant enzyme activities under nonstress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

CAT:

catalase

O ·−2 :

superoxide radical

ONOO :

peroxynitrite

POD:

peroxidase

SNP:

sodium nitroprusside

SOD:

superoxide dismutase

References

  1. Anton, J.M., Marjolein, C.H., Joris, J.B., Robert, A.M., Jordi, B., and Laurentius, A.C., Submergence research using Rumex palustris as a model: looking back and going forward, J. Exp. Bot., 2002, vol. 53, pp. 391–398.

    Article  Google Scholar 

  2. Sairam, R.K., Dharmar, K., Chinnusamy, V., and Meena, R.C., Waterlogging-induced increase in sugar mobilization, fermentation and related gene expression in the roots of mung bean (Vigna radiate), J. Plant Physiol., 2009, vol. 166, pp. 602–616.

    Article  CAS  PubMed  Google Scholar 

  3. Li, C., Jiang, D., Wollenweber, B., Li, Y., Dai, T., and Cao, W., Waterlogging pretreatment during vegetative growth improves tolerance to waterlogging after anthesis in wheat, Plant Sci., 2011, vol. 180, pp. 672–678.

    Article  CAS  PubMed  Google Scholar 

  4. Bailey-Serres, J., Fukao, T., Ronald, P., Ismail, A., Heuer, S., and Mackill, D., Submergence tolerant rice: SUB1’s journey from landrace to modern cultivar, Rice, 2010, vol. 3, pp. 138–147.

    Article  Google Scholar 

  5. Singh, S., Mackill, D.J., and Ismail, A.M., Tolerance of long-term partial stagnant flooding is independent of the SUB1 locus in rice, Field Crops Res., 2011, vol. 121, pp. 311–323.

    Article  Google Scholar 

  6. Yordanova, R.Y. and Popova, L.P., Photosynthetic response of barley plants to soil flooding, Photosynthetica, 2001, vol. 39, pp. 515–520.

    Article  Google Scholar 

  7. Kubiś, J., Exogenous spermidine differentially alters activities of some scavenging system enzymes, H2O2 and superoxide radical levels in water-stressed cucumber leaves, J. Plant Physiol., 2008, vol. 165, pp. 397–406.

    Article  PubMed  Google Scholar 

  8. Yiu, J.C., Juang, L.D., Fang, D.Y.T., Liu, C.W., and Wu, S.J., Exogenous putrescine reduces flooding-induced oxidative damage by increasing the antioxidant properties of Welsh onion, Sci. Hortic., 2009, vol. 120, pp. 306–314.

    Article  CAS  Google Scholar 

  9. Yiu, J.C., Tseng, M.J., and Liu, C.W., Exogenous catechin increases antioxidant enzyme activity and promotes flooding tolerance in tomato (Solanum lycopersicum L.), Plant Soil, 2011, vol. 344, pp. 213–225.

    Article  CAS  Google Scholar 

  10. Jiang, T., Zheng, X.L., Li, J.R., Jing, G.X., Cai, L.Y., and Ying, T.J., Integrated application of nitric oxide and modified atmosphere packaging to improve quality retention of button mushroom (Agaricus bisporus), Food Chem., 2011, vol. 126, pp. 1693–1699.

    Article  CAS  Google Scholar 

  11. Dordas, C., Rivoal, J., and Hill, R.D., Plant haemoglobins, nitric oxide and hypoxic stress, Ann. Bot., 2003, vol. 91, pp. 173–178.

    Article  CAS  PubMed  Google Scholar 

  12. Borisjuk, L., Macherel, D., Benamar, A., Wobus, U., and Rolletschek, H., Low oxygen sensing and balancing in plant seeds: a role for nitric oxide, New Phytol., 2007, vol. 176, pp. 813–823.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Benamar, A., Rolletschek, H., Borisjuk, L., Avelange-Macherel, M.-H., Curien, G., Mostefai, H.A., Andriantsitohaina, R., and Macherel, D., Nitrite-nitric oxide control of mitochondrial respiration at the frontier of anoxia, Biochim. Biophys. Acta, 2008, vol. 1777, pp. 1268–1275.

    Article  CAS  PubMed  Google Scholar 

  14. Igamberdiev, A.U., Bykova, N.V., Shah, J.K., and Hill, R.D., Anoxic nitric oxide cycling in plants: participating reactions and possible mechanisms, Physiol. Plant., 2010, vol. 138, pp. 393–404.

    Article  CAS  PubMed  Google Scholar 

  15. Igamberdiev, A.U. and Hill, R.D., Plant mitochondrial function during anaerobiosis, Ann. Bot., 2009, vol. 103, pp. 259–268.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Giannopotitis, C.N. and Ries, S.K., Superoxide dismutase in higher plants, Plant Physiol., 1977, vol. 59, pp. 309–314.

    Article  Google Scholar 

  17. Egley, G.H., Paul, R.N., Vaughn, K.C., and Duke, S.O., Role of peroxidase in the development of water-impermeable seed coats in Sida spinosa L., Planta, 1983, vol. 157, pp. 224–232.

    Article  CAS  PubMed  Google Scholar 

  18. Nakano, Y. and Asada, K., Hydrogen peroxide scavenged by ascorbate-specific peroxidase in spinach chloroplasts, Plant Cell Physiol., 1981, vol. 22, pp. 867–880.

    CAS  Google Scholar 

  19. Cakmak, I. and Marschner, H., Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves, Plant Physiol., 1992, vol. 98, pp. 1222–1227.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Yu, B.J., Li, S.N., and Liu, Y.L., Comparison of ion effects of salt injury in soybean seedlings, J. Nanjing Agric. Univ., 2002, vol. 25, pp. 5–9 (in Chinese).

    CAS  Google Scholar 

  21. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  CAS  PubMed  Google Scholar 

  22. Heath, R.L. and Packer, L., Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation, Arch. Biochem. Biophys., 1968, vol. 125, pp. 189–198.

    Article  CAS  PubMed  Google Scholar 

  23. Hashiguchi, A., Sakata, K., and Komatsu, S., Proteome analysis of early-stage soybean seedlings under flooding stress, J. Proteome Res., 2009, vol. 8, pp. 2058–2069.

    Article  CAS  PubMed  Google Scholar 

  24. Leshem, Y.Y. and Haramaty, E., Plant aging: the emission of NO and ethylene and effect of NO-releasing compounds on growth of pea (Pisum sativum) foliage, J. Plant Physiol., 1996, vol. 148, pp. 258–263.

    Article  CAS  Google Scholar 

  25. Nanjo, Y., Maruyama, K., Yasue, H., Yamaguchi-Shinozaki, K., Shinozaki, K., and Komatsu, S., Transcriptional responses to flooding stress in roots including hypocotyl of soybean seedlings, Plant Mol. Biol., 2011, vol. 77, pp. 129–144.

    Article  CAS  PubMed  Google Scholar 

  26. Wang, K.H. and Jiang, Y.W., Antioxidant responses of creeping bentgrass roots to waterlogging, Crop Sci., 2007, vol. 47, pp. 232–238.

    Article  CAS  Google Scholar 

  27. Lin, K.H., Chao, P.Y., Yang, C.M., Cheng, W.C., Lo, H.F., and Chang, T.R., The effects of flooding and drought stresses on the antioxidant constituents in sweet potato leaves, Bot. Stud., 2006, vol. 47, pp. 417–426.

    CAS  Google Scholar 

  28. Clark, D., Durner, J., Navarre, D.A., and Klessig, D.F., Nitric oxide inhibition of tobacco catalase and ascor-bate peroxidase, Mol. Plant-Microbe Interact., 2000, vol. 13, pp. 1380–1384.

    Article  CAS  PubMed  Google Scholar 

  29. Tanou, G., Molassiotis, A., and Diamantidis, G., Hydrogen peroxide- and nitric oxide-induced systemic antioxidant prime-like activity under NaCl-stress and stress-free conditions in citrus plants, J. Plant Physiol., 2009, vol. 166, pp. 1904–1913.

    Article  CAS  PubMed  Google Scholar 

  30. Ahmed, S., Nawata, E., Hosokawa, M., Domae, Y., and Sakuratani, T., Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging, Plant Sci., 2002, vol. 163, pp. 117–123.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. X. Du.

Additional information

This text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, H.F., Du, C.X., Ding, L. et al. Exogenous nitric oxide promotes waterlogging tolerance as related to the activities of antioxidant enzymes in cucumber seedlings. Russ J Plant Physiol 61, 366–373 (2014). https://doi.org/10.1134/S1021443714030042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443714030042

Keywords

Navigation