Skip to main content
Log in

Construction of cyanobacterial-bacterial consortium on the basis of axenic cyanobacterial cultures and heterotrophic bacteria cultures for bioremediation of oil-contaminated soils and water ponds

  • Applied Aspects
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The ways of the creation of cyanobacterial-bacterial communities with a high remediation potential for cleaning of oil-contaminated soils and water reservoirs are considered. A special methodology was elaborated for the obtaining of bacteriologically pure (axenic) cultures of cyanobacteria: Phormidium sp. K-1, Oscillatoria sp. A-2, and Oscillatoria sp. C-3. It was shown that 14 strains of bacteria associated with these cyanobacteria manifest a hydrocarbon-oxidizing activity. They belong to the genera Pseudomonas, Alcaligenes, Arthrobacter, and Bacillus. The usage of oil-degrading bacteria, which we isolated from water reservoirs or took from collections, allowed us to construct artificial cyanobacterial-bacterial communities with a high hydrocarbon-oxidizing activity. In field experiments on the landfill site Khimpromservis Aktobe, the high remediatory effect of cyanobacterial-bacterial associations between Phormidium sp. K-1 sp. and bacteria Pseudomonas stutzeri A1, Pseudomonas sp. N2, and P. alcaligenes A5 was demonstrated. The results obtained are the basis for the elaboration of microbiological technologies of environment protection using cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kurakov, A.V., Il’inskii, V.V., Kotelevtsev, S.V., and Sadchikov, A.P., Bioindikatsiya i reabilitatsiya ekosistem pri neftyanykh zagryazneniyakh (Bioindication and Rehabilitation of Ecosystems at Oil Pollution), Moscow: Grafikon, 2006.

    Google Scholar 

  2. Raiskaya, G.Yu., Features of the process of self-purification of oil pollution in specific artificial reservoirs, Cand. Sci. (Biol.), Dissertation, Moscow: Mosk. Gos. Univ., 2003.

    Google Scholar 

  3. Krings, M., Hass, H., Kerp, H., Taylor, T.N., Agerer, R., and Dotzler, N., Endophytic cyanobacteria in a 400-million-year-old land plant: a scenario for the origin of a symbiosis? Rev. Palaeobot. Palynol., 2009, vol. 153, pp. 62–69.

    Article  Google Scholar 

  4. GOST 17.1.3.07-82. Okhrana prirody. Gidrosfera. Pravila kontrolya kachestva vody vodoemov i vodotokov (State Standard 17.1.3.07-82. Protection of Nature. Hydrosphere. Rules for the Control of Water Quality in Ponds and Streams), Moscow, 1982.

  5. GOST 17.1.5.05-85. Okhrana prirody. Gidrosfera. Obshchie trebovaniya k otboru prob poverkhnostnykh i morskikh vod, l’da i atmosfernykh osadkov (State Standard 17.1.5.05-85. Protection of Nature. Hydrosphere. Common Requirements for Sampling the Surface and Marine Waters, Ice, and Atmospheric Precipitations), Moscow, 1985.

  6. Pinevich, G.D., Verzilin, N.N., and Mikhailov, A.A., Study of Spirulina platensis — new object of high culture, Sov. Plant Physiol., 1970, vol. 17, pp. 1037–1046.

    Google Scholar 

  7. Gromov, B.V. and Titova, N.N., Collection of microalgal cultures from the Laboratory of Microbiology, Leningrad University, Mezhvuzovskii sbornik “Kul’tivirovanie kollektsionnykh shtammov vodoroslei” (Interuniversity Collection of Articles Cultivation of Collection Algal Strains), Leningrad, 1983, pp. 3–27.

    Google Scholar 

  8. Dubinin, A.V., Gerasimenko, L.M., and Zavarzin, G.A., Ecophysiology and diversity of cyanobacteria in the lake Magadi, Mikrobiologiya, 1995, vol. 64, pp. 845–849.

    CAS  Google Scholar 

  9. Baryshnikova, L.M., Grishchenkov, V.G., Arinbasarov, M.U., Shkidchenko, A.N., and Voronin, A.M., Biodegradation of oil products by individual degrading strains and their associations in liquid media, Prikl. Biokhim. Mikrobiol., 2001, vol. 37, pp. 463–468.

    CAS  Google Scholar 

  10. Sirenko, L.A., Sakevich, A.I., Osipov, L.F., Lukina, L.F., Kuz’menko, M.I., Kozitskaya, V.N., Velichko, I.M., Myslovich, V.O., Gavrilenko, M.Ya., Arendarchuk, V.V., and Kirpenko, Yu.A., Metody fiziologo-biokhimicheskogo issledovaniya vodoroslei v gidrobiologicheskoi praktike (Methods for Physiological and Biochemical Studies of Algae in Hydrobiological Practice), Kiev: Naukova Dumka, 1975.

    Google Scholar 

  11. Perminova, G.N., Influence of cyanobacteria on the growth of microorganisms in soil, Mikrobiologiya, 1964, vol. 33, pp. 427–476.

    Google Scholar 

  12. Borisova, E.V., Species composition of bacteria associated with microalgae in culture, Algologiya, 1996, vol. 6, pp. 303–313.

    Google Scholar 

  13. Parker, B.C. and Bold, H.C., Biotic relationship between soil algae and other microorganisms, Am. J. Bot., 1998, vol. 48, pp. 185–197.

    Article  Google Scholar 

  14. Goryunova, S.V., The possibility of using nitrogen-fixing cyanobacteria to improve yields of rice fields, Usp. Mikrobiol., 1971, vol. 7, pp. 195–207.

    Google Scholar 

  15. Shtina, E.A., Soil algae as the components of ecosystems, Pochvennye organizmy kak komponent biogeotsenoza (Soil Organisms as the Component of Biogeocenosis), Shtin, E.A., Ed., Moscow: Nauka, 1984, pp. 53–58.

    Google Scholar 

  16. Sainov, D.I., Features of the formation of cyanobacterial communities in anthropogenic ecosystems (Spirulina platensis as an example), Cand. Sci. (Biol.) Dissertation, Moscow: Mosk. Gos. Univ., 2000.

    Google Scholar 

  17. Yankevich, M.I., The formation of remediation biocenoses to reduce human influence on water and soil microecosystems, Sc.D. (Biol.) Dissertation, Shchelkovo: Vseros. Nauch. Issled. Techn. Inst. Biol. Promyshlennosti Ros. Akad. S.-kh. Nauk, 2002.

    Google Scholar 

  18. White, A.W. and Shilo, M., Heterotrophic growth of the filamentous blue-green algae Plectonema boryanum, Arch. Microbiol., 1975, vol. 102, pp. 1222–1227.

    Article  Google Scholar 

  19. Kazitsyna, L.A. and Kupletskaya, N.L., Primenenie UF-, IK-, YaMRi mass-spektroskopii v organicheskoi khimii (Application of UV, IR, NMR, and Mass Spectroscopy in Organic Chemistry), Moscow: Mosk. Gos. Univ., 1979.

    Google Scholar 

  20. Fomchenkov, V.M., Kholodenko, V.P., and Irkhina, I.A., Biotestirovanie integral’noi toksichnosti zagryaznennykh pochv i vod (Bioassay of Integrated Toxicity of Contaminated Soil and Water), Moscow: Nauch. Issled. Inst. Ekonomiki Meditsinskoi Promyshlennosti, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zhubanova.

Additional information

Original Russian Text © A.A. Zhubanova, A.K. Ernazarova, G.K. Kaiyrmanova, B.K. Zayadan, I.S. Savitskaya, G.Zh. Abdieva, A.S. Kistaubaeva, N.Sh. Akimbekov, 2013, published in Fiziologiya Rastenii, 2013, Vol. 60, No. 4, pp. 588–595.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhubanova, A.A., Ernazarova, A.K., Kaiyrmanova, G.K. et al. Construction of cyanobacterial-bacterial consortium on the basis of axenic cyanobacterial cultures and heterotrophic bacteria cultures for bioremediation of oil-contaminated soils and water ponds. Russ J Plant Physiol 60, 555–562 (2013). https://doi.org/10.1134/S1021443713040183

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443713040183

Keywords

Navigation