Skip to main content
Log in

2,4,6-trinitrotoluene as a trigger of oxidative stress in Fagopyrum tataricum callus cells

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Effect of 2,4,6-trinitrotoluene (TNT) on callus cells of Tartar buckwheat (Fagopyrum tataricum (L.) Gaertn.) was accompanied by six-electron reduction of ortho- or para-nitro groups of the xenobiotic with the production of 2-amino-4,6-dinitrotoluene (2-ADNT) and 4-amino-2,6-dinitrotoluene (4-ADNT). It was discovered that the xenobiotic TNT impairs integrity of cell membrane, which apparently results from its one-electron reduction coupled with production of nitro radical-anion and superoxide anion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2-ADNT:

2-amino-4,6-dinitrotoluene

4-ADNT:

4-amino-2,6-dinitrotoluene

DANT:

diaminonitrotoluenes

DAPI:

4,6-diamidino-2-phenylindole dihydrochloride

HADNT:

hydroxylaminodinitrotoluenes

PI:

propidium iodide

Tiron:

sodium 4,5-dihydroxybenzene-1,3-disulfonate

TNT:

2,4,6-trinitrotoluene

References

  1. Karamova, N.S., Il’inskaya, O.N., and Ivanchenko, O.B., Mutagenic Activity of 2,4,6-Trinitrotoluene: The role of Metabolizing Enzymes, Genetika, 1994, vol. 30, pp. 898–902.

    PubMed  CAS  Google Scholar 

  2. Lachance, B., Robidoux, P.Y., Hawari, J., Ampleman, G., Thiboutot, S., and Sunahara, G.I., Cytotoxic and Genotoxic Effects of Energetic Compounds on Bacterial and Mammalian Cells In Vitro, Mutat. Res., 1999, vol. 444, pp. 25–39.

    Article  PubMed  CAS  Google Scholar 

  3. Integrated Risk Information System (IRIS): 2,4,6-Trinitrotoluene (TNT), U.S. Environmental Protection Agency, 1993, CASRN 118-96-7.

  4. Sandermann, H., Plant Metabolism of Xenobiotics, Trends Biochem. Sci., 1992, vol. 17, pp. 82–84.

    Article  PubMed  CAS  Google Scholar 

  5. Cruz-Uribe, O., Cheney, D.P., and Rorrer, G.L., Comparison of TNT Removal from Seawater by Three Marine Macroalgae, Chemosphere, 2007, vol. 67, pp. 1469–1476.

    Article  PubMed  CAS  Google Scholar 

  6. Nepovim, A., Hubalek, M., Podlipna, R., Zeman, S., and Vanek, T., In-Vitro Degradation of 2,4,6-Trinitrotoluene Using Plant Tissue Cultures of Solanum aviculare and Rheum palmatum, Eng. Life Sci, 2004, vol. 4, pp. 46–49.

    Article  CAS  Google Scholar 

  7. Bhadra, R., Wayment, D.G., Hughes, J.B., and Shanks, J.V., Confirmation of Conjugation Processes during TNT Metabolism by Axenic Roots, Environ. Sci. Technol., 1999, vol. 33, pp. 446–452.

    Article  CAS  Google Scholar 

  8. Gandia-Herrero, F., Lorenz, A., Larson, T., Graham, I.A., Bowles, D.J., Rylott, E.L., and Bruce, N.C., Detoxification of the 2,4,6-Trinitrotoluene in Arabidopsis: Discovery of Bifunctional O- and C-Glucosyltransferases, Plant J. — Cell Mol. Biol., 2008, vol. 56, pp. 963–974.

    Article  CAS  Google Scholar 

  9. Peterson, M.M., Horst, G.L., Shea, P.J., and Comfort, S.D., Germination and Seedling Development of Switchgrass and Smooth Bromegrass Exposed to 2,4,6-Trinitrotoluene, Environ. Pollut., 1998, vol. 99, pp. 53–59.

    Article  PubMed  CAS  Google Scholar 

  10. Kvesitadze, G.I., Khatisashvili, G.A., Sadunishvili, T.A., and Evstigneeva, Z.G., Metabolizm antropogennykh toksikantov v vysshikh rasteniyakh (Metabolism of Anthropogenic Toxic Compounds in Higher Plants), Moscow: Nauka, 2005.

    Google Scholar 

  11. Spain, J.C., Hughes, J.B., and Knackmuss, H.-J., Biodegradation of Nitroaromatic Compounds and Explosives, Boca Raton, FL: Lewis Publ., 2000.

    Google Scholar 

  12. Naumenko, E.A., Naumov, A.V., Suvorova, E.S., Gerlakh, R., Ziganshin, A.M., Lozhkin, A.P., Silkin, N.I., and Naumova, R.P., Participation of Oxygen in the Bacterial Transformation of 2,4,6-Trinitrotoluene, Biochemistry (Moscow), 2008, vol. 73, pp. 568–575.

    Article  Google Scholar 

  13. Keyer, K. and Imlay, J.A., Superoxide Accelerates DNA Damage by Elevating Free-Iron Levels, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 13 635–13 640.

    Article  CAS  Google Scholar 

  14. Rumyantseva, N.I., Valieva, A.I., Samokhvalova, N.A., Mukhitov, A.R., Ageeva, M.V., and Lozovaya, V.V., Characteristics of Cell Wall Lignification in Buckwheat Calli with Different Ability to Morphogenesis, Tsitologiya, 1998, vol. 40, pp. 835–843.

    Google Scholar 

  15. Gamborg, O.L., Miller, R.A., and Ojima, K., Nutrient Requirements of Suspension Cultures of Soybean Root Cells, Exp. Cell Res., 1968, vol. 50, pp. 151–158.

    Article  PubMed  CAS  Google Scholar 

  16. Barber, M.J. and Kay, C.J., Superoxide Production during Reduction of Molecular Oxygen by Assimilatory Nitrate Reductase, Arch. Biochem. Biophys., 1996, vol. 326, pp. 227–232.

    Article  PubMed  CAS  Google Scholar 

  17. Grigolava, I.V., Ksenzenko, M.Y., Konstantinov, A.A., Tikhonov, A.N., Kerimov, T.M., and Ruuge, E.K., Tiron as a Spin Trap for Superoxide Radicals Produced by the Respiratory Chain of Submitochondrial Particles, Biochemistry, 1980, vol. 45, pp. 75–82.

    CAS  Google Scholar 

  18. Shi, L., Günter, S., Hübschmann, T., Wick, L.Y., Harms, H., and Müller, S., Limits of Propidium Iodide as a Cell Viability Indicator for Environmental Bacteria, Cytometry, Part A 2007, vol. 71A, pp. 592–598.

    Article  Google Scholar 

  19. Naumov, A.V., Suvorova, E.S., Boronin, A.M., Zaripova, S.K., and Naumova, R.P., Transformation of 2,4,6-Trinitrotoluene into Toxic Hydroxylamino Derivatives by Lactobacilli, Microbiology, 1999, vol. 68, pp. 65–71.

    Google Scholar 

  20. Hannink, N.K., Rosser, S.J., and Bruce, N.C., Phytoremediation of Explosives, Crit. Rev. Plant Sci., 2002, vol. 21, pp. 511–538.

    Article  CAS  Google Scholar 

  21. Wang, C.Y. and Hughes, J.B., Phytotransformation of TNT in Myriophillum aquaticum: A Complex Pathway through Hydroxylamino Intermediates, Battle Press, 2001, vol. 5, pp. 85–95.

    CAS  Google Scholar 

  22. Carlioz, A. and Touati, D., Isolation of Superoxide Dismutase Mutants in Escherichia coli: Is Superoxide Dismutase Necessary for Aerobic Life? EMBO, 1986, vol. 5, pp. 623–630.

    CAS  Google Scholar 

  23. Karpets, Yu.V., Kolupaev, Yu.E., and Yastreb, T.O., Effect of Sodium Nitroprusside on Heat Resistance of Wheat Coleoptiles: Dependence on the Formation and Scavenging of Reactive Oxygen Species, Russ. J. Plant Physiol., 2011, vol. 58, pp. 1027–1033.

    Article  CAS  Google Scholar 

  24. Mojovic-, M., Vuletić, M., Bačić, G.G., and Vučinić, Ž., Oxygen Radicals Produced by Plant Plasma Membranes: An EPR Spin-Trap Study, J. Exp. Bot., 2004, vol. 55, pp. 2523–2531.

    Article  PubMed  CAS  Google Scholar 

  25. Askerlund, P., Larsson, C., Widell, S., and Müller, I.M., NAD(P)H Oxidase and Peroxidase Activities in Purified Plasma Membranes from Cauliflower Inflorescences, Physiol. Plant., 1987, vol. 71, pp. 9–19.

    Article  CAS  Google Scholar 

  26. Auh, C.K. and Murphy, T.R., Plasma Membrane Redox Enzyme Is Involved in the Synthesis of and H2O2 by Phytophtora Elicitor Stimulated Rose Cells, Plant Physiol., 1995, vol. 107, pp. 1241–1247.

    PubMed  CAS  Google Scholar 

  27. Kawano, T., Roles of Reactive Oxygen Species-Generating Peroxidase Reactions in Plant Defense and Growth Induction, Plant Cell Rep., 2003, vol. 21, pp. 829–837.

    PubMed  CAS  Google Scholar 

  28. Kamalova, G.V., Akulov, A.N., and Rumyantseva, N.I., Comparison of Redox State of Cells of Tatar Buckwheat Morphogenic Calluses and Non-Morphogenic Calluses Obtained from Them, Biochemistry (Moscow), 2009, vol. 74, pp. 686–694.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Naumenko.

Additional information

Original Russian Text © E.A. Naumenko, G.V. Sibgatullina, A.R. Mukhitov, A.A. Rodionov, O.N. Il’inskaya, R.P. Naumova, 2013, published in Fiziologiya Rastenii, 2013, Vol. 60, No. 3, pp. 416–423.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naumenko, E.A., Sibgatullina, G.V., Mukhitov, A.R. et al. 2,4,6-trinitrotoluene as a trigger of oxidative stress in Fagopyrum tataricum callus cells. Russ J Plant Physiol 60, 404–410 (2013). https://doi.org/10.1134/S1021443713030102

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443713030102

Keywords

Navigation