Skip to main content
Log in

Effects of various iron supply on oxidative stress development and ferritin formation in the common ice plants

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Mesembryanthemum crystallinum L. plants were grown from seeds in perlite. At the age of 4 weeks (juvenile plants) or 6 weeks (adult plants), they were transferred on nutrient media with different Fe3+ content brought in as Fe2(SO4)3—EDTA complex (pH 6.0): control, iron deficit, and iron “excess”. Adult plants grown in media differing in iron content were subjected to salinity (300 mM NaCl) during the last 8 days of growth. Biochemical analyses were performed after plant fixation in liquid nitrogen; simultaneously, the samples for electron microscopy were taken. Different content of available Fe3+ in medium, especially under salinity conditions, changed sharply the content of chlorophyll and proline, the rate of lipid peroxidation, the level of H2O2, the activities of antioxidant enzymes in the leaves and roots, the number and sizes of plastoglobules, and ferritin formation in plastids. Joint action of salinity and iron deficit enhanced oxidative stress development, whereas iron excess hampered oxidative reaction development, reduced the rate of lipid peroxidation, and increased the chlorophyll content. At iron excess, plastoglobule lysis in plastids did not occur, their number and sizes increased, and ferritin deposits appeared, whereas the latter were absent at iron deficit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

PO:

peroxidase

POL:

peroxidation of lipids

SOD:

superoxide dismutase

References

  1. Gross, J., Stein, R.J., Fett-Netto, A.G., and Fett, J.P., Iron Homeostasis Related Genes in Rice, Genet. Mol. Biol., 2003, vol. 26, pp. 1415–4757.

    Article  Google Scholar 

  2. Dobrovol’skii, V.V., Biospheric Cycles of Heavy Metals and Regulatory Role of Soil, Pochvovedenie, 1997, no. 4, pp. 442–449.

  3. Kosegarten, H., Hoffman, B., Rroco, E., Grolig, F., Glusenkamp, K.-H., and Mengel, K., Apoplastic pH and Fe(III) Reduction in Young Sunflower (Helianthus annuus) Roots, Physiol. Plant., 2004, vol. 122, pp. 95–106.

    Article  CAS  Google Scholar 

  4. Ranieri, A., Castagna, A., Baldan, B., and Soldatini, G.F., Iron Deficiently Differently Affects Peroxidase Isoforms in Sunflower, J. Exp. Bot., 2001, vol. 52, pp. 25–35.

    Article  PubMed  CAS  Google Scholar 

  5. Marschner, H. and Römfeld, V., Strategies of Plants for Aquisition of Iron, Plant Soil, 1994, vol. 165, pp. 261–274.

    Article  CAS  Google Scholar 

  6. Römfeld, V., Muller, C., and Marschner, H., Localization and Capacity of Proton Pumps in Roots of Intact Sunflower Plants, Plant Physiol., 1984, vol. 76, pp. 603–606.

    Article  Google Scholar 

  7. Von Wiren, N., Marschner, H., and Römfeld, V., Uptake Kinetics of Iron-Phytosiderofores in Two Maize Genotypes Differing in Iron Efficiency, Plant Physiol., 1995, vol. 93, pp. 611–616.

    Article  Google Scholar 

  8. Vert, G., Grotz, N., Dedaldechamp, F., Gaymard, F., Guerinot, M.L., Brat, J.F., and Curie, C., IRT1, an Arabidopsis Transporter Essential for Iron Uptake from the Soil and for Plant Growth, Plant Cell, 2002, vol. 14, pp. 1223–1233.

    Article  PubMed  CAS  Google Scholar 

  9. Connolly, E.L. and Querinot, M.L., Iron Stress in Plants, Gen. Biol., 2002, vol. 3, pp. 1465–1477.

    Article  Google Scholar 

  10. Curie, C., Alonso, J.M., le Jean, M., Ecker, J.R., and Briat, J.F., Involvement of NRAMPI from Arabidopsis thaliana in Iron Transport, Biochem. J., 2000, vol. 347, pp. 749–755.

    Article  PubMed  CAS  Google Scholar 

  11. Pich, A., Manteuffel, R., Hilmer, S., Scholz, G., and Schmidt, W., Fe Homeostasis in Plant Cell: Does Nicotinamine Play Multiple Role in the Regulation of Cytoplasmic Fe Concentration? Planta, 2001, vol. 213, pp. 967–976.

    Article  PubMed  CAS  Google Scholar 

  12. Paramonova, N.V., Shevyakova, N.I., and Kuznetsov, Vl.V., Ultrastructure of Ferritin in the Leaves of Mesembryanthemum crystallinum under Stress Conditions, Russ. J. Plant Physiol., 2007, vol. 54, pp. 244–256.

    Article  CAS  Google Scholar 

  13. Theil, E.C. and Hase, T., Plant and Microbial Ferritins, Iron Chelation in Plants and Soil Microorganisms, San Diego: Academic, 1993, pp. 133–156.

    Google Scholar 

  14. Theil, E.C. and Briat, J.-F., Plant Ferritin and Non-Heme Iron Nutrition in Humans, Harvest Plus Technical. Monograph 1, Washington, DC and Cali: International Food Policy Research Institute and International Center for Tropical Agriculture (CIAT), 2004, vol. 1, pp. 1–13.

    Google Scholar 

  15. Petit, J.-M., Briat, J.-F., and Lobreaux, S., Structure and Differential Expression of the Four Members of the Arabidopsis thaliana Ferritin Gene Family, Biochem. J., 2001, vol. 359, pp. 575–582.

    Article  PubMed  CAS  Google Scholar 

  16. Proudhon, D., Briat, J.-F., and Lescure, A.-M., Iron Induction of Ferritin Synthesis in Soybean Cell Suspension, Plant Physiol., 1989, vol. 90, pp. 586–590.

    Article  PubMed  CAS  Google Scholar 

  17. Szigeti, Z., Mechanism of Paraquat Resistance — from the Antioxidant Enzymes to the Transporters, Acta Biol. Szeged, 2005, vol. 49, pp. 177–179.

    Google Scholar 

  18. Bolann, B.F. and Ulvik, R.J., Release of Iron from Ferritin by Xanthine Oxidase. Role of the Superoxide Radical, Biochem. J., 1987, vol. 243, pp. 55–59.

    PubMed  CAS  Google Scholar 

  19. Winter, K. and Holtum, J.A.M., The Effects of Salinity, Crassulacean Acid Metabolism and Plant Age on the Carbon Isotope Composition of Mesembryanthemum crystallinum L. a Halophytic C3-CAM Species, Planta, 2005, vol. 222, pp. 201–209.

    Article  PubMed  CAS  Google Scholar 

  20. Borrell, A., Carbonell, L., Farras, R., Puig-Perellada, P., and Tiburcio, A.F., Polyamines Inhibit Lipid Peroxidation in Senescing Oat Leaves, Physiol. Plant., 1997, vol. 99, pp. 385–390.

    Article  CAS  Google Scholar 

  21. Bates, L.S., Waldren, R.P., and Teare, I.D., Rapid Determination of Free Proline for Water Stress Studies, Plant Soil, 1973, vol. 39, pp. 205–207.

    Article  CAS  Google Scholar 

  22. Brennan, T. and Frenkel, C., Involvement of Hydrogen Peroxide in the Regulation of Senescence in Pear, Plant Physiol., 1997, vol. 59, pp. 411–416.

    Article  Google Scholar 

  23. Radyukina, N.L., Shashukova, A.V., Shevyakova, N.I., and Kuznetsov, Vl.V., Proline Involvement in the Common Sage Antioxidant System in the Presence of NaCl and Paraquat, Russ. J. Plant Physiol., 2008, vol. 55, pp. 649–656.

    Article  CAS  Google Scholar 

  24. Heath, R.L. and Parker, L., Photoperoxidation in Isolated Chloroplasts. I. Kinetics and Stoichiometry of Fatty Acid Peroxidation, Arch. Biochem. Biophys., 1968, vol. 125, pp. 189–198.

    Article  PubMed  CAS  Google Scholar 

  25. Esen, A., A Simple Method for Quantitative, Semiquantitative, and Qualitative Assay of Protein, Anal. Biochem., 1978, vol. 89, pp. 264–273.

    Article  PubMed  CAS  Google Scholar 

  26. Golubkina, N.A., Fluorometric Method for Selenium Determination, Zh. Anal. Khim., 1995, vol. 50, pp. 492–497.

    Google Scholar 

  27. Kuznetsov, Vl.V., Stetsenko, L.A., and Shevyakova, N.I., Exogenous Cadaverine Induces Oxidative Burst and Reduces Cadaverine Conjugate Content in the Common Ice Plant, J. Plant Physiol., 2008, www.sciencedirect.com.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Shevyakova.

Additional information

Original Russian Text © N.I. Shevyakova, B.Ts. Eshinimaeva, N.V. Paramonova, Vl.V. Kuznetsov, 2009, published in Fiziologiya Rastenii, 2009, Vol. 56, No. 4, pp. 518–529.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shevyakova, N.I., Eshinimaeva, B.T., Paramonova, N.V. et al. Effects of various iron supply on oxidative stress development and ferritin formation in the common ice plants. Russ J Plant Physiol 56, 470–479 (2009). https://doi.org/10.1134/S1021443709040050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443709040050

Key words

Navigation