Skip to main content
Log in

Characteristics of oxidative stress in potato plants with modified carbohydrate metabolism

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Effects of sugars on the development of hypothermia-induced oxidative stress were studied in leaves of two potato genotypes (Solanum tuberosum L., cv. Désirée): with normal carbohydrate metabolism and a genotype with increased sugar content modified by insertion of yeast-derived invertase gene. It was found that generation of proceeds more actively in transformed plants than in control plants. On the contrary H2O2 concentration and the catalese and peroxidase activities were lower. At the same time, the activities of superoxide dismutase were similar in plants of both genotypes. A short-term incubation of plants at −7°C confirmed that a higher freezing tolerance of transformed plants was due to low-molecular-weight components of antioxidant protection system rather than to enzymatic component. Literature data and experimental results suggest that the protective effect of sugars is caused by their ability to scavenge ROS nonspecifically under stress conditions

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NBT:

nitro blue tetrazolium

OD:

optical density (units)

ROS:

reactive oxygen species

SOD:

superoxide dismutase

References

  1. Kuzniak, E., Transgenic Plants: An Insight into Oxidative Stress Tolerance Mechanisms, Acta Physiol. Plant., 2002, vol. 24, pp. 97–113.

    Article  CAS  Google Scholar 

  2. Scandalios, J.G., Oxygen Stress and Superoxide Dismutases, Plant Physiol., 1993, vol. 101, pp. 7–12.

    PubMed  CAS  Google Scholar 

  3. Lukatkin, A.S., Initiation and Development of Chilling Injury in Leaves of Chilling-Sensitive Plants, Russ. J. Plant Physiol., 2005, vol. 52, pp. 542–546.

    Article  CAS  Google Scholar 

  4. Chen, P.M., Burke, M.J., and Li, P.H., The Frost Hardiness of Several Solanum Species in Relation to the Freezing of Water, Melting Point Depression and Tissue Water Content, Bot. Gaz. (Chicago), 1976, vol. 137, pp. 313–317.

    Article  Google Scholar 

  5. Trunova, T.I., Rastenie i nizkotemperaturnyi stress. 64-e Timiryazevskoe chtenie (Plant and Low-Temperature Stress, the 64th Timiryazev Lecture), Moscow: Nauka, 2007.

    Google Scholar 

  6. Deryabin, A.N., Trunova, T.I., Dubinina, I.M., Burakhanova, E.A., Sabel’nikova, E.P., Krylova, E.M., and Romanov, G.A., Chilling Tolerance of Potato Plants Transformed with a Yeast-Derived Invertase Gene under the Control of the B33 Patatin Promoter, Russ. J. Plant Physiol., 2003, vol. 50, pp. 449–454.

    Article  CAS  Google Scholar 

  7. Rawyler, A., Arpagaus, S., and Braendle, R., Impact of Oxygen Stress and Energy Availability on Membrane Stability of Plant Cells, Ann. Bot., 2002, vol. 90, pp. 499–507.

    Article  PubMed  CAS  Google Scholar 

  8. Kuznetsov, Vl.V., Radyukina, N.L., and Shevyakova, N.I., Polyamines and Stress: Biological Role, Metabolism, and Regulation, Russ. J. Plant Physiol., 2006, vol. 53, pp. 583–604.

    Article  CAS  Google Scholar 

  9. Kuz’menko, A.I., Morozova, R.P., Nikolenko, I.A., Korpiets, G.V., and Kholodova, Yu.D., Effects of Vitamin D3 and Ecdisteron on Lipid Oxidation by Free Radicals, Biokhimiya, 1997, vol. 62, pp. 712–715.

    Google Scholar 

  10. Lukaszewicz, M., Matysiak-Kata, I., Skala, J., Fecka, I., Cisowski, W., and Szopa, J., Antioxidant Capacity Manipulation in Transgenic Potato Tuber by Changes in Phenolic Compounds Content, J. Agric. Food Chem., 2004, vol. 52, pp. 1526–1533.

    Article  PubMed  CAS  Google Scholar 

  11. Diehl, J.F., Adam, S., Delincée, H., and Jakubick, V., Radiolysis of Carbohydrates and of Carbohydrate-Containing Foodstuffs, J. Agric. Food Chem., 1978, vol. 26, pp. 15–20.

    Article  PubMed  CAS  Google Scholar 

  12. Yaylayan, V.A. and Keyhani, A., Carbohydrate and Amino-Acid Degradation Pathways in L-Methionine/D-[13C]-Glucose Model Systems, J. Agric. Food Chem., 2003, vol. 49, pp. 800–803.

    Article  Google Scholar 

  13. Morelli, R., Russo-Volpe, S., Bruno, N., and Lo Scalzo, R., Fenton-Dependent Damage to Carbohydrates: Free Radical Scavenging Activity of Some Simple Sugars, J. Agric. Food Chem., 2003, vol. 51, pp. 7418–7425.

    Article  PubMed  CAS  Google Scholar 

  14. Aver’yanov, A.A. and Lapikova, V.P., Relationships between Sugars and Hydroxyl Radical in Relation to Fungitoxic Effects of Leaf Exudates, Biokhimiya, 1989, vol. 54, pp. 1646–1651.

    CAS  Google Scholar 

  15. Sonnewald, U., Hajlrezaei, M.-R., Kossmann, J., Heyer, A., Thethewey, R.N., and Willmitzer, L., Increased Potato Tuber Size Resulting from Apoplastic Expression of a Yeast Invertase, Nat. Biotechnol., 1997, vol. 15, pp. 794–797.

    Article  PubMed  CAS  Google Scholar 

  16. Deryabin, A.N., Sin’kevich, M.S., Dubinina, I.M., Burakhanova, E.A., and Trunova, T.I., Effect of Sugars on the Development of Oxidative Stress Induced by Hypothermia in Potato Plants Expressing Yeast Invertase Gene, Russ. J. Plant Physiol., 2007, vol. 54, pp. 32–38.

    Article  CAS  Google Scholar 

  17. Rosha-Sosa, M., Sonnewald, U., Frommer, W., Stratmann, M., Schell, J., and Willmeitzer, L., Both Developmental and Metabolic Signals Activate the Promoter of a Class I Patatin Gene, EMBO J., 1989, vol. 8, pp. 23–29.

    Google Scholar 

  18. Murashige, T. and Skoog, F., A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Cultures, Physiol. Plant., 1962, vol. 15, pp. 473–497.

    Article  CAS  Google Scholar 

  19. Bowler, C., van Montagu, M., and Inze, D., Superoxide Dismutase and Stress Tolerance, Annu. Rev. Plant Physiol. Plant. Mol. Biol., 1992, vol. 42, pp. 83–116.

    Article  Google Scholar 

  20. Kumar, G.N. and Knowles, N.R., Changes in Lipid Peroxidation and Lipolytic and Free-Radical Scavenging Enzyme during Aging and Sprouting of Potato (Solanum tuberosum L.) Seed-Tubers, Plant Physiol., 1993, vol. 102, pp. 115–124.

    PubMed  CAS  Google Scholar 

  21. Chasov, A.V., Gordon, L.Kh., Kolesnikov, O.P., and Minibaeva, F.V., Peroxidase of the Cell Surface—a Generator of Superoxide Anions in Wheat Root Cells under Wounding Stress, Tsitologiya, 2002, vol. 44, pp. 691–696.

    CAS  Google Scholar 

  22. Turkina, M.V. and Sokolova, S.V., Methods for Determination of Mono- and Oligosaccharides, Biokhimicheskie metody v fiziologii rastenii (Biochemical Methods in Plant Physiology), Pavlinova, O.A., Ed., Moscow: Nauka, 1971, pp. 7–34.

    Google Scholar 

  23. Choi, S.M., Jeong, S.W., Jeong, W.J., Kwon, S.Y., Chow, W.S., and Park, Y.I., Chloroplast Cu/Zn-Superoxide Dismutase Is a Highly Sensitive Site in Cucumber Leaves Chilled in the Light, Planta, 2002, vol. 216, pp. 315–324.

    Article  PubMed  CAS  Google Scholar 

  24. Deryabin, A.N., Dubinina, I.M., Burakhanova, E.A., Astakhova, N.V., Sabel’nikova, E.P., and Trunova, T.I., Influence of Yeast-Derived Invertase Gene Expression in Potato Plants on Membrane Lipid Peroxidation at Low Temperature, J. Therm. Biol., 2005, vol. 30, pp. 73–77.

    Article  CAS  Google Scholar 

  25. Gonzales-Meler, M.A., Ribascarbo, M., Giles, L., and Siedow, J.N., The Effect of Growth and Measurement Temperature on the Activity of the Alternative Respiratory Pathway, Plant Physiol., 1999, vol. 120, pp. 765–772.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Trunova.

Additional information

Original Russian Text © M.S. Sin’kevich, A.N. Deryabin, T.I. Trunova, 2009, published in Fiziologiya Rastenii, 2009, Vol. 56, No. 2, pp. 186–192.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sin’kevich, M.S., Deryabin, A.N. & Trunova, T.I. Characteristics of oxidative stress in potato plants with modified carbohydrate metabolism. Russ J Plant Physiol 56, 168–174 (2009). https://doi.org/10.1134/S1021443709020046

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443709020046

Key words

Navigation