Skip to main content
Log in

Vacuolar symplast and methodological approach to monitoring water self-diffusion between vacuoles of contacting root cells

  • Methods
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

New concepts of structural-functional organization of the transport system in higher plants were evolved at the current stage of investigations. In addition to the classical (cytoplasmic) symplast, another supra-cellular continuum was supposed to exist in the plant tissue, which interconnects vacuoles of neighboring cells through desmotubules and represents the second transport pathway within the plasmodesmata. This study describes and experimentally validates the method for monitoring the self-diffusion of water molecules between vacuoles of contacting cells in the maize (Zea mays L.) root by means of NMR method with a pulsed magnetic field gradient. The method is based on the fact that, at long period of self-diffusion observation, when water molecules in the apoplast and cytoplasm had already completed their relaxation and did not contribute significantly to the proton echo signal, the slope of the initial portion of the diffusional decay is independent of water permeability of the vacuolar membrane and is determined exclusively by water permeability of intervacuolar pathway through the desmotubules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

DD:

diffusional decay of spin echo

PMFG NMR:

pulsed magnetic field gradient NMR method

SDC(D, D eff):

self-diffusion coefficient

References

  1. Gamalei, Yu.V., Transportnaya sistema sosudistykh rastenii (Transport System in Vascular Plants), St. Petersburg: St. Petersburg Gos. Univ., 2004.

    Google Scholar 

  2. Vakhmistrov, D.B., Prostranstvennaya organizatsiya ionnogo transporta v korne, 49-e Timiryazevskoe chtenie (Spatial Organization of Ion Transport in Roots, the 49th Timiryazev Lecture), Moscow: Nauka, 1991.

    Google Scholar 

  3. Kursanov, A.L., Transport assimilyatov v rastenii, Moscow: Nauka, 1976. Translated under the title Assimilate Transport in Plants, Amsterdam: Elsevier, 1984.

    Google Scholar 

  4. Velikanov, G.A., Volobueva, O.V., Belova, L.P., and Gaponenko, E.M., Vacuolar Symplast as a Regulated Pathway for Water Flows in Plants, Russ. J. Plant Physiol., 2005, vol. 52, pp. 326–331.

    Article  CAS  Google Scholar 

  5. Velikanov, G.A. and Belova, L.P., Regulation of Water Permeability of Vacuolar Symplast, Russ. J. Plant Physiol., 2005, vol. 52, pp. 758–764.

    Article  CAS  Google Scholar 

  6. Anisimov, A.V. and Ratkovich, S., Transport vody v rasteniyakh. Issledovanie impul’snym metodom YaMR (Water Transport in Plants: Study by the Pulse NMR Technique), Moscow: Nauka, 1992.

    Google Scholar 

  7. Idiatullin, D.Sh., Skirda, V.D., and Smirnov, V.S., Method for Measuring of Longitudial Nuclear Magnetic Relaxation-Time T1, A. c. SU 1578608 A1, Byull. Izobret., 1990, no. 26.

  8. Van Dusschoten, D., de Jager, P.A., and van As, H., Extraction Diffusion Constants from Echo-Time Dependent PFG NMR Data Using Relaxation-Time Information, J. Magn. Res., Ser. A, 1995, vol. 116, pp. 22–28.

    Article  Google Scholar 

  9. Van der Weerd, L., Claessens, M.M.A.E., Efde, C., and van As, H., Nuclear Magnetic Resonance Imaging of Membrane Permeability Changes in Plant during Osmotic Stress, Plant, Cell Environ., 2002, vol. 25, pp. 1539–1549.

    Article  Google Scholar 

  10. Fedotov, V.D., Miftakhutdinova, F.G., and Murtazin, Sh.F., Investigation of Proton Relaxation in Living Plant Tissues Using the Spin-Echo Method, Biofizika, 1969, vol. 14, pp. 873–882.

    PubMed  CAS  Google Scholar 

  11. Abetsedarskaya, L.A., Miftakhutdinova, F.G., Fedotov, V.D., and Mal’tsev, N.A., Proton Relaxation in Solutes and Gels of Some Proteins, Mol. Biol. (Moscow), 1967, vol. 1, pp. 451–462.

    CAS  Google Scholar 

  12. Brownstein, K.R. and Tarr, C.E., Importance of Classical Diffusion in NMR Studies of Water in Biological Cells, Phys. Rev. A, 1979, vol. 19, pp. 2446–2453.

    Article  Google Scholar 

  13. Brownstein, K.R., Diffusion as an Explanation of Observed NMR Behavior of Water Absorbed on Wood, J. Magn. Res., 1980, vol. 40, pp. 505–510.

    CAS  Google Scholar 

  14. Tanner, J.E. and Stejskal, E.O., Restricted Self-Diffusion of Protons in Colloidal Systems by the Pulse-Gradient Spin-Echo Method, J. Chem. Phys., 1968, vol. 49, pp. 1768–1777.

    Article  CAS  Google Scholar 

  15. Maklakov, A.I., Skirda, V.D., and Fatkullin, N.F., Samodiffuziya v rastvorakh i rasplavakh polimerov (Self-Diffusion in Solutions and Melts of Polymers), Kazan: Kazan. Gos. Univ., 1987.

    Google Scholar 

  16. Chizmadzhev, Yu.A., Markin, V.S., Tarasevich, M.R., and Chirkov, Yu.T., Makrokinetika protsessov v poristykh sredakh (Macrokinetics of Processes in Porous Media), Moscow: Nauka, 1971.

    Google Scholar 

  17. Hurlimann, M.D., Helmer, K.G., de Swiet, T.M., Sen, P.N., and Sotak, C.H., Spin Echoes in a Constant Gradient and in the Presence of Simple Restriction, J. Magn. Res., Ser. A, 1995, vol. 113, pp. 260–266.

    Article  Google Scholar 

  18. Callaghan, P.T. and Codd, S.L., Generalized Calculation of NMR Imaging Edge Effects Arising from Restricted Diffusion in Porous Media, Magn. Res. Imag., 1998, vol. 16, pp. 471–477.

    Article  CAS  Google Scholar 

  19. Velikanov, G.A., Gordon, L.Kh., Volkov, V.Ya., and Barysheva, T.S., Investigation of Cell Membrane Permeability in vivo Using the NMR Method, Fiziol. Biokh. Kul’t. Rast., 1977, vol. 9, pp. 197–201.

    Google Scholar 

  20. Karger, J., Zur Massbarkeit von Diffusionkoeffizienten in Zweiphase System mit Hilfe der Methode der Gepulsten Feldgradienten, Ann. Physic. Ser. 1B, 1969, vol. 24, pp. 1–7.

    Article  Google Scholar 

  21. Michael, W., Kholodova, V.P., and Ehwald, R., Gas and Liquids in Intercellular Spaces of Maize Roots, Ann. Bot., 1999, vol. 84, pp. 665–673.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Velikanov.

Additional information

Original Russian Text © G.A. Velikanov, 2007, published in Fiziologiya Rastenii, 2007, Vol. 54, No. 5, pp. 770–780.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velikanov, G.A. Vacuolar symplast and methodological approach to monitoring water self-diffusion between vacuoles of contacting root cells. Russ J Plant Physiol 54, 683–692 (2007). https://doi.org/10.1134/S1021443707050172

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443707050172

Key words

Navigation