Skip to main content
Log in

A role for SPINDLY gene in the regulation of oxidative stress response in Arabidopsis

  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

SPINDLY (SPY) gene encodes a putative O-linked N-acetyl-glucosamine transferase, and yeast two-hybrid assay identified GIGANTEA (GI) as a SPY-interacting partner in Arabidopsis. GIGANTEA gene was previously shown to be involved in the regulation of oxidative stress response; however, it is unclear whether SPY gene is also involved in oxidative stress response. Here we showed that SPY plays a role in the regulation of the oxidative stress response. The spy-1 mutant was more tolerant to paraquat (PQ)-or hydrogen peroxide (H2O2)-mediated oxidative stress than wild-type plants. Analyses of endogenous H2O2 and superoxide anion radicals as well as lipid peroxidation revealed that enhanced tolerance of the spy-1 mutant to PQ-stress was not due to defects in the PQ uptake or the PQ sequestration from its site of action but rather the spy-1 mutation alleviated oxidative damage of plant cells upon PQ stress. Higher constitutive activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in spy-1 are more likely to be due to activation of both CSD2 gene encoding chloroplast Cu/Zn SOD and APX1 gene. Taken together, these results suggest that enhanced tolerance of the spy-1 mutant to oxidative stress is associated, at least in part, with constitutive activation of CSD2 and APX1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

CAT:

catalase

MDA:

malondialdehyde

MS:

Murashige and Skoog nutrient medium

PQ:

paraquat

ROS:

reactive oxygen species

RT-PCR:

reverse transcription PCR

SOD:

superoxide dismutase

References

  1. Dirk, I. and Marc, V.M., Oxidative Stress in Plants, Curr. Opin. Biotechnol., 1995, vol. 6, pp. 153–158.

    Article  Google Scholar 

  2. Mittler, R., Oxidative Stress, Antioxidants and Stress Tolerance, Trends Plant Sci., 2002, vol. 7, pp. 405–410.

    Article  PubMed  CAS  Google Scholar 

  3. Eva, V., Dirk, I., and Frank, V.B., Signal Transduction during Oxidative Stress, J. Exp. Bot., 2002, vol. 53, pp. 1227–1236.

    Article  Google Scholar 

  4. Scandalios, J.G., Oxidative Stress Responses — What Have Genome-Scale Studies Taught Us, Gen. Biol., 2002, vol. 3, pp. 10 191–10 196.

    Google Scholar 

  5. Desikan, R., AH-Mackerness, S., Hancock, J.T., and Neill, S.J., Regulation of the Arabidopsis Transcriptome by Oxidative Stress, Plant Physiol., 2001, vol. 127, pp. 159–172.

    Article  PubMed  CAS  Google Scholar 

  6. Alscher, R.G., Erturk, N., and Heath, L.S., Role of Superoxide Dismutases (SODs) in Controlling Oxidative Stress in Plants, J. Exp. Bot., 2002, vol. 53, pp. 1331–1341.

    Article  PubMed  CAS  Google Scholar 

  7. Shigeoka, S., Ishikawa, T., Tamoi, M., Miyagawa, Y., Takeda, T., Yabuta, Y., and Yoshimura, K., Regulation and Function of Ascorbate Peroxidase Isoenzymes, J. Exp. Bot., 2002, vol. 53, pp. 1305–1319.

    Article  PubMed  CAS  Google Scholar 

  8. Mittler, R., Vanderauwera, S., Gollery, M., and Breusegem, F.V., Reactive Oxygen Gene Network of Plants, Trends Plant Sci., 2004, vol. 9, pp. 490–498.

    Article  PubMed  CAS  Google Scholar 

  9. Thornton, T., Swain, S.M., and Olszewski, N., Gibberellin Signal Transduction Presents: The SPY Who O-GlcNAc’d Me, Trends Plant Sci., 1999, vol. 4, pp. 424–428.

    Article  PubMed  Google Scholar 

  10. Tseng, T.S., Salomé, P.A., McClung, C.R., and Olszewski, N.E., SPINDLY and GIGANTEA Interact and Act in Arabidopsis thaliana Pathways Involved in Light Responses, Flowering, and Rhythms in Cotyledon Movements, Plant Cell, 2004, vol. 16, pp. 1550–1563.

    Article  PubMed  CAS  Google Scholar 

  11. Huq, E., Tepperman, J.M., and Quail, P.H., GIGANTEA Is a Nuclear Protein Involved in Phytochrome Signaling in Arabidopsis, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 9789–9794.

    Article  PubMed  CAS  Google Scholar 

  12. Koornneef, M., Hanhart, C.J., and van der Veen, J.H., A Genetic and Physiological Analysis of Late Flowering Mutants in Arabidopsis thaliana, Mol. Gen. Genet., 1991, vol. 229, pp. 57–66.

    Article  PubMed  CAS  Google Scholar 

  13. Eimert, K., Wang, S.M., Lue, W.L., and Chen, J., Monogenic Recessive Mutations Causing Both Late Floral Initiation and Excess Starch Accumulation in Arabidopsis, Plant Cell, 1995, vol. 7, pp. 1703–1712.

    Article  PubMed  CAS  Google Scholar 

  14. Fowler, S., Lee, K., Onouchi, H., Samach, A., Richardson, K., Morris, B., Coupland, G., and Putterill, J., GIGANTEA: A Circadian Clock-Controlled Gene That Regulates Photoperiodic Flowering in Arabidopsis and Encodes a Protein with Several Possible Membrane-Spanning Domains, EMBO J., 1999, vol. 18, pp. 4679–4688.

    Article  PubMed  CAS  Google Scholar 

  15. Park, D.H., Somers, D.E., Kim, Y.S., Choy, Y.H., Lim, H.K., Soh, M.S., Kim, H.J., Kay, S.A., and Nam, H.G., Control of Circadian Rhythms and Photoperiodic Flowering by the Arabidopsis GIGANTEA Gene, Science, 1999, vol. 285, pp. 1579–1582.

    Article  PubMed  CAS  Google Scholar 

  16. Kurepa, J., Smalle, J., van Montagu, M., and Inez, D., Oxidative Stress Tolerance and Longevity in Arabidopsis: The Late-Flowering Mutant gigantea Is Tolerant to Paraquat, Plant J., 1998, vol. 14, pp. 759–764.

    Article  PubMed  CAS  Google Scholar 

  17. Jacobsen, S.E. and Olszewski, N.E., Mutations at the SPINDLY Locus of Arabidopsis Alter Gibberellin Signal Transduction, Plant Cell, 1993, vol. 5, pp. 887–896.

    Article  PubMed  CAS  Google Scholar 

  18. Murashige, T. and Skoog, F., A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Culture, Physiol. Plant., 1962, vol. 15, pp. 473–497.

    Article  CAS  Google Scholar 

  19. Dhindsa, R.S., Dhindsa, P., and Thorpe, T.A., Leaf Senescence Correlated with Increased Levels of Membrane Permeability and Lipid Peroxidation and Decreased Levels of Superoxide Dismutase and Catalase, J. Exp. Bot., 1987, vol. 32, pp. 93–101.

    Google Scholar 

  20. Brennan, T. and Frenkel, C., Involvement of Hydrogen Peroxide in Regulation of Senescence in Pear, Plant Physiol., 1977, vol. 59, pp. 411–416.

    PubMed  CAS  Google Scholar 

  21. Shah, K., Kumar, R.G., Verma, S., and Dubey, R.S., Effect of Cadmium on Lipid Peroxidation, Superoxide Anion Generation and Activities of Antioxidant Enzymes in Growing Rice Seedlings, Plant Sci., 2001, vol. 161, pp. 1135–1144.

    Article  CAS  Google Scholar 

  22. Bradford, M.M., A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  PubMed  CAS  Google Scholar 

  23. Beauchamp, C. and Fridovich, I., Superoxide Dismutase: Improved Assay and an Assay Applicable to PAGE, Anal. Biochem., 1971, vol. 44, pp. 276–287.

    Article  PubMed  CAS  Google Scholar 

  24. Cakmak, I. and Marschner, H., Magnesium Deficiency and High Light Intensity Enhance Activities of Superoxide Dismutase, Ascrobate Peroxidase, and Glutathione Reductase in Bean Leaves, Plant Physiol., 1992, vol. 98, pp. 1222–1227.

    Article  PubMed  CAS  Google Scholar 

  25. Nakano, Y. and Asada, K., Hydrogen Peroxide Is Scavenged by Ascorbate-Specific Peroxidase in Spinach Chloroplasts, Plant Cell Physiol., 1981, vol. 22, pp. 867–880.

    CAS  Google Scholar 

  26. Rao, M.V., Paliyath, G., Ormrod, D.P., Murr, D.P., and Watkins, C.B., Influence of Salicyclic Acid on H2O2 Production, Oxidative Stress, and H2O2-Metabolizing Enzymes (Salicyclic Acid-Mediated Oxidative Damage Requires H2O2), Plant Physiol., 1997, vol. 115, pp. 137–149.

    Article  PubMed  CAS  Google Scholar 

  27. Rao, M.V. and Davis, R.D., Ozone-Induced Cell Death Occurs via Two Distinct Mechanisms in Arabidopsis: The Role of Salicylic Acid, Plant J., 1999, vol. 17, pp. 603–614.

    Article  PubMed  CAS  Google Scholar 

  28. Van Camp, W., Bowler, C., Villarroel, R., Tsang, E.W., van Montagu, M., and Inze, D., Characterization of Iron Superoxide Dismutase cDNAs from Plants Obtained by Genetic Complementation in Escherichia coli, Proc. Natl. Acad. Sci. USA, 1990, vol. 87, pp. 9903–9907.

    Article  PubMed  Google Scholar 

  29. Davletova, S., Rizhsky, L., Liang, H., Shengqiang, Z., Oliver, D.J., Coutu, J., Shulaev, V., Schlauch, K., and Mittler, R., Cytosolic Ascorbate Peroxidase 1 Is a Central Component of the Reactive Oxygen Gene Network of Arabidopsis, Plant Cell, 2005, vol. 17, pp. 268–281.

    Article  PubMed  CAS  Google Scholar 

  30. Hart, J.J. and Ditomaso, J.M., Sequestration and Oxygen Radical Detoxification as Mechanisms of Paraquat Tolerance, Weed Sci., 1994, vol. 42, pp. 277–284.

    CAS  Google Scholar 

  31. Purba, E., Preston, C., and Powles, S.B., The Mechanism of Tolerance to Paraquat Is Strongly Temperature Dependent in Resistant Hordeum leporinum Link and H. glaucum Steud., Planta, 1995, vol. 196, pp. 464–468.

    Article  CAS  Google Scholar 

  32. Kliebenstein, D.J., Monde, R., and Last, R.L., Superoxide Dismutase in Arabidopsis: An Eclectic Enzyme Family with Disparate Regulation and Protein Localization, Plant Physiol., 1998, vol. 118, pp. 637–650.

    Article  PubMed  CAS  Google Scholar 

  33. Mittler, R. and Zilinskas, B.A., Molecular Cloning and Characterization of a Gene Encoding Pea Cytosolic Ascorbate Peroxidase, J. Biol. Chem., 1992, vol. 267, pp. 21802–21807.

    PubMed  CAS  Google Scholar 

  34. Mittler, R. and Zilinskas, B.A., Regulation of Pea Cytosolic Ascorbate Peroxidase and Other Antioxidant Enzymes during the Progression of Drought Stress and Following Recovery from Drought, Plant J., 1994, vol. 5, pp. 397–405.

    Article  PubMed  CAS  Google Scholar 

  35. Storozhenko, S., Pauw, P.D., Montagu, M.V., Inze, D., and Kushnir, S., The Heat-Shock Element Is a Functional Component of the Arabidopsis APX1 Gene Promoter, Plant Physiol., 1998, vol. 118, pp. 1005–1014.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Russian in Fiziologiya Rastenii, 2006, Vol. 53, No. 4, pp. 604–611.

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, S.Q., Ye, M., Huang, Q. et al. A role for SPINDLY gene in the regulation of oxidative stress response in Arabidopsis . Russ J Plant Physiol 53, 541–547 (2006). https://doi.org/10.1134/S1021443706040170

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443706040170

Key words

Navigation