Skip to main content
Log in

Effect of Exposure in Aqueous Medium at Elevated Temperature on the Structure of Nonwoven Materials Based on Polylactide and Natural Rubber

  • MEDICAL POLYMERS
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

Nonwoven composite materials based on polylactide and natural rubber are obtained by electrospinning. Using optical microscopy, it is shown that natural rubber influences the diameter and geometry of the elementary fiber. Features of crystalline and amorphous phases in the samples are studied by the spin-probe EPR method and differential scanning calorimetry. The introduction of 5, 10, and 15 wt % rubber into the polylactide matrix causes a sharp rise in the molecular mobility of the probe and increases the melting enthalpy of the fiber. Exposure in aqueous medium at 45 and 70°С for 3 and 5 h considerably affects the structural and dynamic parameters of fibers, as evinced by a sharp reduction in the correlation time and an increase in the melting enthalpy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. S. H. Lee and S. Wang, Composites, Part A 37, 80 (2006).

    Article  CAS  Google Scholar 

  2. N. Graupner, A. S. Herrmann, and J. Mussig, Composites, Part A 40, 810 (2009).

    Article  Google Scholar 

  3. Yu. N. Filatov, Electrospinning of Fibrous Materials (ESF-process) (Neft’ i gaz, Moscow, 1997) [in Russian].

  4. R. M. Streicher, M. Schmidt, and S. Fiorito, Nanomedicine 2, 861 (2007).

    Article  CAS  Google Scholar 

  5. V. K. Holm, S. Ndoni, and J. Risbo, J. Food Sci. 71, 40 (2006).

    Article  Google Scholar 

  6. V. Piemonte and F. Gironi, J. Polym. Environ. 21, 313 (2013).

    Article  CAS  Google Scholar 

  7. Y. V. Tertyshnaya and A. A. Popov, Polym. Sci., Ser. D 13, 306 (2020).

    CAS  Google Scholar 

  8. Y. V. Tertyshnaya, N. S. Levina, A. A. Popov, M. N. Moskovskii, and A. Yu. Izmailov, Fibre Chem. 51, 117 (2019).

    Article  CAS  Google Scholar 

  9. Y. V. Tertyshnaya, A. V. Lobanov, S. G. Karpova, and P. V. Pantyukhov, J. Mol. Liq. 302, 112176 (2020).

    Article  CAS  Google Scholar 

  10. F. Yang, R. Murugan, S. Wang, and S. Ramakrishna, Biomaterials 26, 2603 (2005).

    Article  CAS  Google Scholar 

  11. A. Nicosia, W. Gieparda, J. Foksowicz-Flaczyk, J. Walentowska, D. Wesolek, B. Vazquez, F. Prodi, and F. Belosi, Sep. Purif. Technol. 154, 154 (2015).

    Article  CAS  Google Scholar 

  12. K. Pongtanayut, C. Thongpin, and O. Santawitee, Energy Procedia 34, 888 (2013).

    Article  CAS  Google Scholar 

  13. C. Xu, D. Yuan, L. Fu, and Y. Chen, Polym. Test. 37, 94 (2014).

    Article  Google Scholar 

  14. A. Linos, M. Berekaa, R. Reichelt, U. Keller, J. Schmitt, H.-C. Flemming, R. M. Kroppenstedt, and A. Steinbüchel, Appl. Environ. Microbiol. 66, 1639 (2000).

    Article  CAS  Google Scholar 

  15. M. Yikmis and A. Steinbüchel, Appl. Environ. Microbiol. 78, 4543 (2012).

    Article  CAS  Google Scholar 

  16. Y. V. Tertyshnaya, M. V. Podzorova, and M. N. Moskovskiy, Polymers 13, 461 (2021).

    Article  CAS  Google Scholar 

  17. Yu. V. Tertyshnaya and L. S. Shibryaeva, RF Patent No. 2734883 (2020).

  18. D. E. Budil, S. Lee, S. Saxena, and J. H. Freed, J. Magn. Reson., Ser. A 120, 155 (1996).

    CAS  Google Scholar 

  19. V. P. Timofeev, A. Yu. Misharin, and Ya. V. Tkachev, Biophysics 56, 407 (2011).

    Article  Google Scholar 

  20. A. L. Buchachenko and A. M. Vasserman, Stable Radicals (Khimiya, Moscow, 1973) [in Russian].

    Google Scholar 

  21. L. -T. Lim, R. Auras, and M. Rubino, Prog. Polym. Sci. 33, 820 (2008).

    Article  CAS  Google Scholar 

  22. Ozerin, A.N. Candidate’s Dissertation in Chemistry (Nauch. -Issled. Fiz.-Khim. Inst. im. Karpova, Moscow, 1977.

  23. S. G. Karpova, A. A. Ol’khov, A. V. Lobanov, A. A. Popov, and A. L. Iordanskii, Nanotechnol. Russ. 14, 132 (2019).

    Article  CAS  Google Scholar 

  24. S. G. Karpova, A. A. Ol’khov, A. A. Popov, A. L. Zhul’kina, and A. L. Iordanskii, Polym. Sci., Ser. A 61, 480 (2019).

    Article  CAS  Google Scholar 

  25. S. G. Karpova, A. A. Ol’khov, S. N. Chvalun, P. M. Tyubaeva, A. A. Popov, and A. L. Iordanskii, Nanotechnol. Russ. 14, 367 (2019).

    Article  CAS  Google Scholar 

  26. A. L. Iordanskii, A. A. Ol’khov, S. G. Karpova, E. L. Kucherenko, R. Yu. Kosenko, S. Z. Rogovina, A. E. Chalykh, and A. A. Berlin, Polym. Sci., Ser. A 59, 352 (2017).

    Article  CAS  Google Scholar 

  27. A. V. Bychkova, S. G. Karpova, A. A. Ol’khov, and A. L. Iordanskii, in Synthesis and Functional Properties of Hybrid Nanoforms of Bioactive compounds and Drugs, Ed. by M. Ya. Mel’nikova and L. I. Trakhtenberg (TEKhNOSFERA, Moscow, 2019) [in Russian].

Download references

ACKNOWLEDGMENTS

In this work, we used equipment of the Shared Research Center of the Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, New Materials and Technologies and the Shared Research Center of Plekhanov Russian University of Economics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Karpova.

Additional information

Translated by T. Soboleva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpova, S.G., Tertyshnaya, Y.V., Podzorova, M.V. et al. Effect of Exposure in Aqueous Medium at Elevated Temperature on the Structure of Nonwoven Materials Based on Polylactide and Natural Rubber. Polym. Sci. Ser. A 63, 515–525 (2021). https://doi.org/10.1134/S0965545X21050060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X21050060

Navigation