Skip to main content
Log in

Conformational properties of rigid-chain amphiphilic macromolecules: The phase diagram

  • Structure, Properties
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

The coil-globule transition in rigid-chain amphiphilic macromolecules was studied by means of computer simulation, and the phase diagrams for such molecules in the solvent quality-persistence length coordinates were constructed. It was shown that the type of phase diagram depends to a substantial extent on the degree of polymerization of a macromolecule. Relatively short amphiphilic macromolecules in the poor-solvent region always form a spherical globule, with the transition to this globule involving one or two intermediate conformations. These are the disk globule if the Kuhn segment is relatively large and the string of spherical micelles or the disk globule in the case of relative flexible chains. The phase diagram of a long rodlike amphiphilic chain turned out to be even more complex. Namely, three characteristic regions were distinguished in the region of a poor solvent, depending on the chain rigidity: the region of a cylindrical globule without certain order in the main chain, the region of the cylindrical globule with blobs having the collagen ordering of the chain, and the region of coexistence of collagen-like and toroidal globules. In the intermediate transitional region, not only conformations of strings of spherical micelle beads but also the necklace conformations in which the polymer chain in each bead has collagen ordering can occur in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. Lifshitz, A. Y. Grosberg, and A. R. Khokhlov, Rev. Mod. Phys. 50, 683 (1978).

    Article  CAS  Google Scholar 

  2. A. Yu. Grosberg, Biofizika 24, 32 (1979).

    CAS  Google Scholar 

  3. V. V. Vasilevskaya, A. R. Khokhlov, S. Kidoaki, and K. Yoshikawa, Biopolymers 41 (5), 51 (1997).

    Article  CAS  Google Scholar 

  4. V. A. Ivanov, W. Paul, and K. Binder, J. Chem. Phys. 109, 5659 (1998).

    Article  CAS  Google Scholar 

  5. V. A. Ivanov, M. R. Stukan, V. V. Vasilevskaya, et al., Macromol. Theory Simul. 9, 488 (2000).

    Article  CAS  Google Scholar 

  6. M. R. Stukan, V. A. Ivanov, A. Y. Grosberg, et al., J. Chem. Phys. 118, 3392 (2003).

    Article  CAS  Google Scholar 

  7. H. Noguchi and K. Yoshikawa, Chem. Phys. Lett. 278, 184 (1997).

    Article  CAS  Google Scholar 

  8. H. Noguchi and K. Yoshikawa, J. Chem. Phys. 109, 5070 (1998).

    Article  CAS  Google Scholar 

  9. Y. A. Kuznetsov, E. G. Timoshenko, and K. A. Dawson, J. Chem. Phys. 105, 7116 (1996).

    Article  CAS  Google Scholar 

  10. J. Ubbink and T. Odijk, Europhys. Lett. 33, 353 (1996).

    Article  CAS  Google Scholar 

  11. J. Ubbink and T. Odijk, Biophys. J. 68, 54 (1995).

    Article  CAS  Google Scholar 

  12. I. R. Cooke and D. R. Williams, Physica A (Amsterdam) 339, 45 (2004).

    Article  CAS  Google Scholar 

  13. M. J. Stevens, Biophys. J. 80, 130 (2001).

    Article  CAS  Google Scholar 

  14. L. C. Cosule and J. A. Schelmann, Nature (London) 259, 333 (1976).

    Article  Google Scholar 

  15. Yu. M. Evdokimov, A. L. Platonov, A. S. Tikhonenko, and Ya. M. Varshavsky, FEBS Lett. 23, 180 (1972).

    Article  CAS  Google Scholar 

  16. S. Klimenko, T. Tikhonenko, and V. Andreev, J. Mol. Biol. 23, 523 (1967).

    Article  CAS  Google Scholar 

  17. V. A. Bloomfield, Curr. Opin. Struct. Biol. 6, 334 (1996).

    Article  CAS  Google Scholar 

  18. M. Cerritelli, N. Cheng, A. Rosenberg, et al., Cell 91, 271 (1997).

    Article  CAS  Google Scholar 

  19. N. V. Hud, Biophys. J. 69, 1355 (1995).

    Article  CAS  Google Scholar 

  20. N. V. Hud and K. H. Downing, Proc. Natl. Acad. Sci. U. S. A. 98, 14925 (2001).

    Article  CAS  Google Scholar 

  21. K. Marx and G. Ruben, J. Biomol. Struct. Dyn. 4, 23 (1986).

    Article  CAS  Google Scholar 

  22. I. M. Okhapkin, E. E. Makhaeva, and A. R. Khokhlov, Colloid Polym. Sci. 284, 117 (2005).

    Article  CAS  Google Scholar 

  23. I. M. Okhapkin, A. A. Askadskii, V. A. Markov, et al., Colloid Polym. Sci. 284, 575 (2006).

    Article  CAS  Google Scholar 

  24. A. Goldar and J. L. Sikorav, Eur. Phys. J., E 14, 211 (2004).

    Article  CAS  Google Scholar 

  25. V. V. Vasilevskaya, P. G. Khalatur, and A. R. Khokhlov, Macromolecules 36, 10103 (2003).

    Article  CAS  Google Scholar 

  26. V. V. Vasilevskaya, A. A. Klochkov, A. A. Lazutin, et al., Macromolecules 37, 5444 (2004).

    Article  CAS  Google Scholar 

  27. V. V. Vasilevskaya, V. A. Markov, P. G. Khalatur, and A. R. Khokhlov, J. Chem. Phys. 1, 124 (2006).

    Google Scholar 

  28. V. A. Ermilov, V. V. Vasilevskaya, and A. R. Khokhlov, Polymer Science, Ser. A 49, 89 (2007) [Vysokomol. Soedin., Ser. A 49, 109 (2007)].

    Article  Google Scholar 

  29. M. P. Allen and D. Tildesley, Computer Simulations of Liquids (Clarendon, Oxford, 1990).

    Google Scholar 

  30. H. C. Andersen, J. Comput. Phys. 52, 24 (1983).

    Article  CAS  Google Scholar 

  31. A. Yu. Grosberg and A. R. Khokhlov, Statistical Physics of Macromolecules (Nauka, Moscow, 1989; American Institute of Physics, Ithaca, 1994).

    Google Scholar 

  32. P. G. Khalatur, Vysokomol. Soedin., Ser. A 22, 2050 (1980).

    CAS  Google Scholar 

  33. P. G. Khalatur, Vysokomol. Soedin., Ser. A 22, 2226 (1980).

    CAS  Google Scholar 

  34. M. M. Hingorani and M. O’Donnell, Nature Rev. Mol. Cell Biol. 1, 22 (2000).

    Article  CAS  Google Scholar 

  35. M. M. Hingorani and M. O’Donnell, Curr. Biol. 8, 83 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Markov.

Additional information

Original Russian Text © V.A. Markov, V.V. Vasilevskaya, P.G. Khalatur, G. ten Brinke, A.R. Khokhlov, 2008, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2008, Vol. 50, No. 6, pp. 965–976.

This work was supported by the Russian Foundation for Basic Research, project no. 05-03-33077; the Netherlands Organization for Scientific Research, project no. 047.011.2005.011; the basic research program of the Russian Academy of Sciences Division of Chemistry and Materials Science; and the National Scientific Research Center (CNRS), France.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markov, V.A., Vasilevskaya, V.V., Khalatur, P.G. et al. Conformational properties of rigid-chain amphiphilic macromolecules: The phase diagram. Polym. Sci. Ser. A 50, 621–629 (2008). https://doi.org/10.1134/S0965545X08060059

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X08060059

Keywords

Navigation