Skip to main content
Log in

Effect of Size Factor on the Activity of Zeolites in the Liquid-Phase Cracking of Hydrocarbons

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The catalytic activity of zeolites of the FAU, MFI, and BEA framework types with different SiO2/Al2O3 ratios, which are dispersed in the reaction medium, has been studied in the liquid-phase cracking of n-alkanes at a temperature of 300–350°С and a hydrogen pressure of 7 atm. It has been found that a BEA zeolite catalyst with a SiO2/Al2O3 ratio of 75 exhibits the highest activity. It has been shown that the main factor determining the activity of zeolites under the above conditions is the specific surface area of the catalyst particles smaller than 200 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. A. Corma, J. Catal. 216, 298 (2003).

    Article  CAS  Google Scholar 

  2. D. Guo, B. Shen, Y. Qin, et al., Microporous Mesoporous Mater. 211, 192 (2015).

    Article  CAS  Google Scholar 

  3. Z. Qin, B. Shen, X. Gao, et al., J. Catal. 278, 266 (2011).

    Article  CAS  Google Scholar 

  4. Q. Yu, H. Sun, L. Li, et al., Microporous Mesoporous Mater. 273, 297 (2019).

    Article  CAS  Google Scholar 

  5. M. O. Kazakov, K. A. Nadeina, I. G. Danilova, et al., Catal. Today 305, 117 (2018).

    Article  CAS  Google Scholar 

  6. L. Jia, X. Sun, X. Ye, et al., Microporous Mesoporous Mater. 176, 16 (2013).

    Article  CAS  Google Scholar 

  7. S. N. Khadzhiev, Pet. Chem. 51, 1 (2011).

    Article  CAS  Google Scholar 

  8. S. N. Khadzhiev, K. M. Kadiev, and M. K. Kadieva, Pet. Chem. 54, 323 (2014).

    Article  CAS  Google Scholar 

  9. M. V. Kulikova and S. N. Khadzhiev, Pet. Chem. 57, 1173 (2017).

    Article  CAS  Google Scholar 

  10. N. V. Kolesnichenko, S. V. Konnov, V. S. Pavlov, et al., Pet. Chem. 57, 576 (2017).

    Article  CAS  Google Scholar 

  11. M. Kniazeva and A. Maximov, Catalysts 8, 644 (2018).

    Article  Google Scholar 

  12. M. I. Onishchenko and A. L. Maksimov, Pet. Chem. 58, 651 (2018).

    Article  CAS  Google Scholar 

  13. M. I. Onishchenko, A. B. Kulikov, and A. L. Maksimov, Pet. Chem. 57, 1287 (2017).

    Article  CAS  Google Scholar 

  14. M. J. Climent, A. Corma, R. Guil-López, et al., J. Catal. 175, 70 (1998).

    Article  CAS  Google Scholar 

  15. M. J. Climent, A. Corma, H. Garcia, et al., J. Catal. 197, 385 (2001).

    Article  CAS  Google Scholar 

  16. R. Zhang, Sh. Xu, D. Raja, et al., Microporous Mesoporous Mater. 278, 297 (2019).

    Article  CAS  Google Scholar 

  17. A. Osatiashtiani, B. Puértolas, C. C. S. Oliveira, et al., Biomass Convers. Biorefin. 7, 331 (2017).

    Article  CAS  Google Scholar 

  18. W. Sun, G. Liu, L. Wang, and X. Zhang, Fuel 144, 96 (2015).

    Article  CAS  Google Scholar 

  19. S. Bao, G. Liu, L. Wang, and X. Zhang, Appl. Catal., A405, 61 (2011).

    CAS  Google Scholar 

  20. S. Bao, G. Liu, L. Wang, et al., Microporous Mesoporous Mater. 143, 458 (2011).

    Article  CAS  Google Scholar 

  21. L. Wan, S. Bao, G. Liu, et al., Catal. Commun. 32, 71 (2013).

    Article  CAS  Google Scholar 

  22. K. I. Dement’ev, T. A. Palankoev, D. S. Abramova, et al., Pet. Chem. 59, 596 (2019).

    Article  Google Scholar 

  23. P. Hudec, A. Nociar, A. Smiešková, and T. Jakubík, Studies in Surface Science and Catalysis, vol. 158: Molecular Sieves: From Basic Research to Industrial Applications, Ed. by J. Čejka, N. Žilková, and P. Nachtigall (Elsevier, Amsterdam, 2005), Part B, p. 1795.

  24. O. A. Pakhmanova, S. V. Antonov, K. I. Dement’ev, et al., Pet. Chem. 52, 401 (2012).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by a grant from the Russian Science Foundation (project no. 17-73-30046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. I. Dement’ev.

Ethics declarations

CONFLICT OF INTEREST

One of the authors—A.L. Maksimov—is editor-in-chief of the Petroleum Chemistry journal. The other authors declare that there is no conflict of interest regarding the publication of this manuscript.

ADDITIONAL INFORMATION

Fig. D1. X-ray diffraction patterns of zeolite samples of the FAU framework type.

Fig. D2. X-ray diffraction patterns of zeolite samples of the BEA framework type.

Fig. D3. X-ray diffraction patterns of zeolite samples of the MFI framework type.

Fig. D4. Ammonia TPD spectra for zeolite samples of the FAU framework type.

Fig. D5. Ammonia TPD spectra for zeolite samples of the BEA framework type.

Fig. D6. Ammonia TPD spectra for zeolite samples of the MFI framework type.

Additional information

Translated by M. Timoshinina

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dement’ev, K.I., Palankoev, T.A., Kuznetsov, P.S. et al. Effect of Size Factor on the Activity of Zeolites in the Liquid-Phase Cracking of Hydrocarbons. Pet. Chem. 60, 30–38 (2020). https://doi.org/10.1134/S0965544120010065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544120010065

Keywords:

Navigation