Skip to main content
Log in

Carbon monoxide oxidation over microfiltration ceramic membranes

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Characteristics of the porous permeable ceramics obtained from natural sources of Komi Republic have been studied. The method of surface self-propagating high-temperature synthesis has been adapted to form a catalytically active layer on the surface of a porous ceramic support. It has been shown that high activity of the synthesized CuO–Co3O4–CeO2/kaolin and CuO–Co3O4–CeO2/cordierite catalytic membranes is due to even distribution of highly dispersed active components both on the surface and in the bulk of microfiltration ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. N. Vershinin, V. A. Bakaev, A. L. Gusev, and O. N. Efimov, Altern. Energy Ekol. 78 (10), 85 (2009).

    Google Scholar 

  2. S. M. Eyubova and V. D. Yagodovskii, Russ. J. Phys. Chem. A 81, 544 (2007).

    Article  CAS  Google Scholar 

  3. I. A. Kotareva, I. V. Oshanina, K. Yu. Odintsov, et al., Kinet. Catal. 49, 18 (2008).

    Article  CAS  Google Scholar 

  4. R. M. Talyshinskii and V. S. Gadzhi-Kasumov, Kinetic Aspects of Designing of Heterogeneous Catalysts and Chemical Reactors (np., 2003) [in Russian].

    Google Scholar 

  5. O. V. Ishchenko, P. M. Silenko, T. M. Zakharova, et al., Powder Metall. Met. Ceram. 50, 662 (2012).

    Article  CAS  Google Scholar 

  6. Y. Feng, L. Li, S. Niu, et al., Appl. Catal., B 111/112, 461 (2012).

    Article  Google Scholar 

  7. S. Sun, Q. Gao, H. Wang, et al., Appl. Catal., B 97, 284 (2010).

    Article  CAS  Google Scholar 

  8. J. Zhu and Q. Gao, Microporous Mesoporous Mater. 24, 144 (2009).

    Article  Google Scholar 

  9. L. G. Rovira, J. J. Delgado, K. ElAmrani, et al., Catal. Today 180, 162 (2012).

    Article  Google Scholar 

  10. F. C. Patcas, G. I. Garrido, and B. Kraushaar-Czarnetzki, Chem. Eng. Sci. 62, 3984 (2007).

    Article  CAS  Google Scholar 

  11. T. S. Kazaryan, A. D. Sedykh, F. G. Gainullin, and A. I. Shevchenko, Membrane Technology in Solving Environmental Problems of Gas Industry (Nedra, Moscow, 1997) [in Russian].

    Google Scholar 

  12. Yu. I. Komolikov and L. A. Blaginina, Ogneupory Tekh. Keram., No. 5, 20 (2002).

    Google Scholar 

  13. N. G. Medvedkova and V. V. Nazarov, Steklo Keram., No. 4, 20 (1996).

    Google Scholar 

  14. I. A. Vorozheikin, K. E. Ivanovskaya, and Yu. A. Aleksandrov, Vestn. Nizhegorodsk. Univ., Ser.: Khim., No. 1, 92 (2000).

    Google Scholar 

  15. M. I. Dominguez, M. Sanchez, M. A. Centeno, et al., Appl. Catal., A 302, 96 (2006).

    Article  CAS  Google Scholar 

  16. M. V. Tsodikov, V. V. Teplyakov, A. S. Fedotov, et al., Izv. Akad. Nauk, Ser. Khim., No. 1, 54 (2011).

    Google Scholar 

  17. M. V. Tsodikov, A. S. Fedotov, V. V. Zhmakin, et al., Pet. Chem. 51, 568 (2011).

    Article  CAS  Google Scholar 

  18. L. D. Zobina, G. D. Semchenko, R. A. Tarnopol’skaya, et al., Ogneupory, No. 2, 24 (1987).

    Google Scholar 

  19. A. K. Karklit and G. M. Katorgin, Ogneupory, No. 4, 19 (1995).

    Google Scholar 

  20. V. V. Belyaev, I. N. Burtsev, and E. P. Kalinin, Vestn. Komi Nauchn. Tsentra, No. 11, 10 (1996).

    Google Scholar 

  21. U. F. Zav’yalova, V. F. Tret’yakov, T. N. Burdeinaya, and P. G. Tsyrul’nikov, Khim. Interesakh Ustoich. Razvit. 13, 751 (2005).

    Google Scholar 

  22. U. F. Zav’yalova, V. F. Tret’yakov, T. N. Burdeinaya, et al., Pet. Chem. 45, 255 (2005).

    Google Scholar 

  23. U. F. Zav’yalova, V. F. Tret’yakov, T. N. Burdeinaya, et al., Kinet. Catal. 46, 752 (2005).

    Article  Google Scholar 

  24. U. F. Zav’yalova, P. S. Barbashova, A. S. Lermontov, et al., Kinet. Catal. 48, 162 (2007).

    Article  Google Scholar 

  25. I. V. Desyatykh, A. A. Vedyagin, Yu. S. Kotolevich, and P. G. Tsyrul’nikov, Combust., Explos., Shock Waves 47, 677 (2011).

    Article  Google Scholar 

  26. MINCRYST. http://databaseiemacru/mincryst/rus/ searchphp

  27. GOST (State Standard) 2409-95: Refractories: Method for Determination of Bulk Density, Apparent and True Porosity, Water Absorption. (Izd. Standartov, Moscow, 2002).

    Google Scholar 

  28. Q. Liu, C.-X. Liu, X.-L. Nie, et al., Mater. Lett. 72, 101 (2012).

    Article  CAS  Google Scholar 

  29. A. Alvarez, S. Ivanova, M. A. Centeno, and J. A. Odriozola, Appl. Catal., A 431/432, 9 (2012).

    Article  Google Scholar 

  30. X. Wang, L. Song, H. Yang, et al., J. Mater. Chem. 22, 3426 (2012).

    Article  CAS  Google Scholar 

  31. Y. Feng, L. Li, S. Niu, et al., Appl. Catal., B 111/112, 461 (2012).

    Article  Google Scholar 

  32. C. Cao, Z. Dou, H. Liu, and W. Song, Chin. J. Catal. 33, 1334 (2012).

    Article  CAS  Google Scholar 

  33. G. S. Lane and E. E. Wolf, J. Catal. 105, 386 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. F. Krivoshapkina.

Additional information

Original Russian Text © E.F. Krivoshapkina, A.A. Vedyagin, P.V. Krivoshapkin, I.V. Desyatykh, 2013, published in Membrany i Membrannye Tekhnologii, 2013, Vol. 3, No. 2, pp. 83–92.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivoshapkina, E.F., Vedyagin, A.A., Krivoshapkin, P.V. et al. Carbon monoxide oxidation over microfiltration ceramic membranes. Pet. Chem. 55, 901–908 (2015). https://doi.org/10.1134/S0965544115100096

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544115100096

Keywords

Navigation