Skip to main content
Log in

Morpho-Functional Basis of Complex Sentence Processing in Adults and Children

Human Physiology Aims and scope Submit manuscript

Abstract

The review discusses the neurophysiological basis of the analysis of complex sentences, such as passives or reverse word order sentences. We adhere to the hypothesis that reanalysis is an obligatory stage of complex sentence processing and is based on the context analysis and integration of semantic and syntactic sentence features. Brain activation patterns observed during the analysis were compared for different complex sentences. It was concluded that, in adults, the same brain regions are involved in the processing of syntactically complex and simple sentences and that only the degree of activation of cerebral structures differs (mostly in the left middle temporal gyrus, left inferior frontal gyrus, and left angular gyrus). The review describes the ontogenesis of brain zones involved in sentence analysis and the pathways that connect the zones. The available data demonstrate that complex sentence processing mechanisms may change with age. A transition to a more productive analysis strategy is based on the ability to use syntactic markers and develops after 6–7 years of age, when the dorsal pathway of speech processing is formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Notes

  1. Since the Russian is a free word order language, the example contains the subject (S)—verb (V)—object (O) and OVS sentences.

  2. First example is the SVO sentence in active voice, second is the passive sentence with SVO word order.

  3. First example is the OVS sentence in active voice, second is the passive sentence with OVS word order.

REFERENCES

  1. Bierwisch, M., How on-line is language processing? in The Process of Language Understanding, Flores D’Arcais, G.B. and Jarvella, R.J., Eds., New York: Wiley, 1983, p. 113.

    Google Scholar 

  2. Friederici, A.D., The brain basis of language processing: from structure to function, Physiol. Rev., 2011, vol. 91, no. 4, p. 1357.

    PubMed  Google Scholar 

  3. Luriya, A.R., Yazyk i soznanie (Language and Consciousness), Khomskaya, E.D., Ed., Rostovon-Don: Feniks, 1998.

  4. Akhutina, T.V.,Velichkovskii, B.M., and Kempe, V., Semantic syntax and orientation on word order in ontogenesis, in Semantika rechevoi deyatel’nosti (Semantics of Speech Activity), Moscow: Nauka, 1988, p. 5.

  5. Akhutina, T.V., Porozhdenie rechi: Neirolingvisticheskii analiz sintaksisa (Origin of Speech: Neuro-Linguistic Analysis of Syntax), Moscow: Mosk. Gos. Univ., 1989.

  6. Abbot-Smith, K., Chang, F., Rowland, C., et al., Do two and three year old children use an incremental first-NP-as-agent bias to process active transitive and passive sentences? A permutation analysis, PLoS One, 2017, vol. 12, no. 10, p. e0 186 129.

    Google Scholar 

  7. Statnikov, A.I., Syndrome analysis of difficulties in understanding of logical-grammatical constructions by children, Nats. Psikhol. Zh., 2015, no. 2 (18), p. 77.

  8. Akhutina, T.V., Korneev, A.A., and Matveeva, E.Yu., Age dynamics of understanding of logical and grammatical constructions by elementary school students and its brain mechanisms, Spets. Obraz., 2017, no. 3 (47), p. 15.

  9. Hickok, G. and Poeppel, D., Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language, Cognition, 2004, vol. 92, nos. 1–2, p. 67.

    PubMed  Google Scholar 

  10. Hickok, G. and Poeppel, D., The cortical organization of speech processing, Nat. Rev. Neurosci., 2007, vol. 8, no. 5, p. 393.

    CAS  PubMed  Google Scholar 

  11. Friederici, A.D., White-matter pathways for speech and language processing, Handb. Clin. Neurol., 2015, vol. 129, p. 177.

    PubMed  Google Scholar 

  12. Nasios, G., Dardiotis, E., and Messinis, L., From Broca and Wernicke to the neuromodulation era: insights of brain language networks for neurorehabilitation, Behav. Neurol., 2019, vol. 2019, art. ID 9894571.

    PubMed  PubMed Central  Google Scholar 

  13. Gow, Jr., D.W., The cortical organization of lexical knowledge: a dual lexicon model of spoken language processing, Brain Lang., 2012, vol. 121, no. 3, p. 273.

    PubMed  PubMed Central  Google Scholar 

  14. Hickok, G. and Poeppel, D., Neural basis of speech perception, Handb. Clin. Neurol., 2015, vol. 129, p. 149.

    PubMed  Google Scholar 

  15. Zaehle, T., Geiser, E., Alter, K., et al., Segmental processing in the human auditory dorsal stream, Brain Res., 2008, vol. 1220, p. 179.

    CAS  PubMed  Google Scholar 

  16. Vigneau, M., Beaucousin, V., Hervé, P.Y., et al., Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing, NeuroImage, 2005, vol. 30, no. 4, p. 1414.

    Google Scholar 

  17. Vigneau, M., Beaucousin, V., Hervé, P.-Y., et al., What is right-hemisphere contribution to phonological, lexico-semantic, and sentence processing? NeuroImage, 2011, vol. 54, no. 1, p. 577.

    CAS  PubMed  Google Scholar 

  18. Walenski, M., Europa, E., Caplan, D., et al., Neural networks for sentence comprehension and production: an ALE-based meta-analysis of neuroimaging studies, Hum. Brain Mapp., 2019. https://doi.org/10.1002/hbm.24523

  19. Koechlin, E. and Jubault, T., Broca’s area and the hierarchical organization of human behavior, Neuron, 2006, vol. 50, no. 6, p. 963.

    CAS  PubMed  Google Scholar 

  20. Rogalsky, C. and Hickok, G., The role of Broca’s area in sentence comprehension, J. Cognit. Neurosci., 2011, vol. 23, no. 7, p. 1664.

    Google Scholar 

  21. Adank, P., Design choices in imaging speech comprehension: an activation likelihood estimation (ALE) meta-analysis, NeuroImage, 2012, vol. 63, no. 3, p. 1601.

    PubMed  Google Scholar 

  22. Hertrich, I., Dietrich, S., and Ackermann, H., The role of the supplementary motor area for speech and language processing, Neurosci. Biobehav. Rev., 2016, vol. 68, p. 602.

    PubMed  Google Scholar 

  23. Pulvermüller, F., Semantic embodiment, disembodiment or misembodiment? In search of meaning in modules and neuron circuits, Brain Lang., 2013, vol. 127, no. 1, p. 86.

    PubMed  Google Scholar 

  24. Jirak, D., Menz, M.M., Buccino, G., et al., Grasping language—A short story on embodiment, Conscious Cognit., 2010, vol. 19, no. 3, p. 711.

    Google Scholar 

  25. Sakreida, K., Scorolli, C., Menz, M.M., et al., Are abstract action words embodied? An fMRI investigation at the interface between language and motor cognition, Front. Hum. Neurosci., 2013, vol. 7, p. 125.

    PubMed  PubMed Central  Google Scholar 

  26. Yang, J. and Shu, H., Involvement of the motor system in comprehension of non-literal action language: a meta-analysis study, Brain Topogr., 2016, vol. 29, no. 1, p. 94.

    PubMed  Google Scholar 

  27. Thompson, C.K. and Meltzer-Asscher, A., Neurocognitive mechanisms of verb argument structure processing, in Structuring the Argument: Multidisciplinary Research on Verb Argument Structure, Bachrach, A., Roy, I., and Stockall, L., Eds., Amsterdam: John Benjamins, 2014, p. 141.

    Google Scholar 

  28. Humphries, C., Binder, J.R., Medler, D.A., et al., Syntactic and semantic modulation of neural activity during auditory sentence comprehension, J. Cognit. Neurosci., 2006, vol. 18, no. 4, p. 665.

    Google Scholar 

  29. Mollo, G., Jefferies, E., Cornelissen, P., and Gennari, S.P., Context-dependent lexical ambiguity resolution: MEG evidence for the time-course of activity in left inferior frontal gyrus and posterior middle temporal gyrus, Brain Lang., 2018, vol. 177–178, p. 23.

    PubMed  PubMed Central  Google Scholar 

  30. Davey, J., Thompson, H.E., Hallam, G., et al., Exploring the role of the posterior middle temporal gyrus in semantic cognition: integration of anterior temporal lobe with executive processes, NeuroImage, 2016, vol. 137, p. 165.

    PubMed  PubMed Central  Google Scholar 

  31. Jefferies, E., The neural basis of semantic cognition: converging evidence from neuropsychology, neuroimaging and TMS, Cortex, 2013, vol. 49, no. 3, p. 611.

    PubMed  Google Scholar 

  32. Tyler, L.K., Randall, B., and Stamatakis, E.A., Cortical differentiation for nouns and verbs depends on grammatical markers, J. Cognit. Neurosci., 2008, vol. 20, no. 8, p. 1381.

    CAS  Google Scholar 

  33. Elli, G.V., Lane, C., and Bedny, M.A., A double dissociation in sensitivity to verb and noun semantics across cortical networks, Cereb. Cortex, 2019, vol. 29, no. 11, p. 4803.

    PubMed  Google Scholar 

  34. Weiner, K.S. and Zilles, K., The anatomical and functional specialization of the fusiform gyrus, Neuropsychologia., 2016, vol. 83, p. 48.

    PubMed  Google Scholar 

  35. Cohen, L., Lehéricy, S., Chochon, F., et al., Language-specific tuning of visual cortex? Functional properties of the Visual Word Form Area, Brain, 2002, vol. 125, no. 5, p. 1054.

    Google Scholar 

  36. Bonilha, L., Hillis, A.E., Hickok, G., et al., Temporal lobe networks supporting the comprehension of spoken words, Brain, 2017, vol. 140, no. 9, p. 2370.

    PubMed  Google Scholar 

  37. Forseth, K.J., Kadipasaoglu, C.M., Conner, C.R., et al., A lexical semantic hub for heteromodal naming in middle fusiform gyrus, Brain, 2018, vol. 141, no. 7, p. 2112.

    PubMed  PubMed Central  Google Scholar 

  38. Seghier, M.L., The angular gyrus: multiple functions and multiple subdivisions, Neuroscientist, 2013, vol. 19, no. 1, p. 43.

    PubMed  PubMed Central  Google Scholar 

  39. Obert, A., Gierski, F., Calmus, A., et al., Differential bilateral involvement of the parietal gyrus during predicative metaphor processing: an auditory fMRI study, Brain Lang., 2014, vol. 137, p. 112.

    PubMed  Google Scholar 

  40. Burks, J.D., Boettcher, L.B., Conner, A.K., et al., White matter connections of the inferior parietal lobule: a study of surgical anatomy, Brain Behav., 2017, vol. 7, no. 4, p. e00 640.

    Google Scholar 

  41. Rosselli, M., Ardila, A., and Bernal, B., Angular gyrus connectivity model for language: a functional neuroimaging meta-analysis, Rev. Neurol., 2015, vol. 60, no. 11, p. 495.

    PubMed  Google Scholar 

  42. Yue, Q., Zhang, L., Xu, G., et al., Task-modulated activation and functional connectivity of the temporal and frontal areas during speech comprehension, Neuroscience, 2013, vol. 237, p. 87.

    CAS  PubMed  Google Scholar 

  43. Progovac, L., Rakhlin, N., Angell, W., et al., Neural correlates of syntax and proto-syntax: evolutionary dimension, Front. Psychol., 2018, vol. 9, p. 2415.

    PubMed  PubMed Central  Google Scholar 

  44. Zaccarella, E., Schell, M., and Friederici, A.D., Reviewing the functional basis of the syntactic Merge mechanism for language: a coordinate-based activation likelihood estimation meta-analysis, Neurosci. Biobehav. Rev., 2017, vol. 80, p. 646.

    PubMed  Google Scholar 

  45. Catani, M., Forkel, S., and Thiebaut de Schotten, M., Asymmetry of white matter pathways, in The Two Halves of the Brain, Cambridge, MA: MIT Press, 2009, ch. 7, p. 177.

    Google Scholar 

  46. Panesar, S.S., Yeh, F.C., Jacquesson, T., et al., A quantitative tractography study into the connectivity, segmentation and laterality of the human inferior longitudinal fasciculus, Front. Neuroanat., 2018, vol. 12, p. 47.

    PubMed  PubMed Central  Google Scholar 

  47. Ye, Z. and Zhou, X., Conflict control during sentence comprehension: fMRI evidence, NeuroImage, 2009, vol. 48, no. 1, p. 280.

    PubMed  Google Scholar 

  48. Europa, E., Gitelman, D.R., Kiran, S., et al., Neural connectivity in syntactic movement processing, Front. Hum. Neurosci., 2019, vol. 13, p. 27.

    PubMed  PubMed Central  Google Scholar 

  49. Yokoyama, S., Watanabe, J., Iwata, K., et al., Is Broca’s area involved in the processing of passive sentences? An event-related fMRI study, Neuropsychologia, 2007, vol. 45, no. 5, p. 989.

    PubMed  Google Scholar 

  50. Meyer, L. and Friederici, A.D., Neural systems underlying the processing of complex sentences, in Neurobiology of Language, Hickok, G. and Small, S., Eds., Amsterdam: Elsevier, 2015, p. 597.

    Google Scholar 

  51. Tseitlin, S.N., The formation of a child’s intermediate language system: observations on the acquisition of negative constructions, Acta Ling. Petropolitana, 2017, vol. 13-3, p. 623.

    Google Scholar 

  52. Vygotskii, L.S., Development of active attention in childhood, in Khrestomatiya po vnimaniyu (Anthological Publications on Attention), St. Petersburg: Detstvo, 2007.

  53. Gvozdev, A.N., Aspects of Studying Child Speech, St. Petersburg: Detstvo, 2007.

  54. Tseitlin, S.N., Ocherki po slovoobrazovaniyu i formoobrazovaniyu v detskoi rechi (Essays on Word Formation in Child’s Speech), Moscow: Znak, 2009.

  55. Baudouin de Courtenay, J., Versuch einer Theorie phonetischer Alternationen: Ein Kapitel aus der Psychophonetik, Strasburg, 1895.

  56. Dressler, W., On word formation in natural morphology, Wiener Ling. Gaz., 1982, vol. 26, pp. 3–14.

    Google Scholar 

  57. Slobin, D.I., Cognitive prerequisites for the development of grammar, in Studies in Child Language Development, Ferguson, C. and Slobin, D., Eds., New York: Holt, Rinehart & Winston, 1973, p. 175.

    Google Scholar 

  58. Tomasello, M., Constructing a language, in A Used-Based Theory of Language Acquisition, Cambridge, MA: Harvard Univ. Press, 2003. P. 408.

    Google Scholar 

  59. Brown, R., A First Language: The Early Stages, Cambridge, MA: Harvard Univ. Press, 1973, p. 437.

    Google Scholar 

  60. Eliseeva, M.B., Stanovlenie individual’noi iazykovoi sistemy rebenka (The Development of the Individual Language System of a Child), Moscow: Yazyki Slav. Kul’t., 2014.

  61. Kasevich, V.B., Ontolinguistics: typology and language rules, Yazyk Rechevaya Deyat., 1998, vol. 1, p. 31.

    Google Scholar 

  62. Leont’ev, A.A., Osnovy psikholingvistiki (Fundamentals of Psycholinguistics), Moscow: Smysl, 1997.

  63. Shakhnarovich, A.M., Psycholinguistics of communication learning problems in ontogenesis, in Teoreticheskie i prikladnye problemy rechevogo obshcheniya (Theoretical and Applied Problems in Speech Communication), Moscow: Nauka, 1979.

  64. Dmitrievskii, A.A., Practical notes on Russian syntax, Filols.Zap., 1877, vol. 4, p. 3.

    Google Scholar 

  65. Tesnière, L., Eléments de Syntaxe Structurale, Paris: Klincksieck, 1959.

    Google Scholar 

  66. Gagarina, N.V., Stanovlenie grammaticheskikh kategorii russkogo glagola v detskoi rechi (Acquisition of Grammatical Categories of Russian Verb in Child’s Speech), St. Petersburg: Nauka, 2008.

  67. Tomasello, M., Do young children have adult syntactic competence? Cognition, 2000, vol. 74, no. 3, p. 209.

    CAS  PubMed  Google Scholar 

  68. Slobin, D.I. and Greene, J., Psycholinguistics: Chomsky and Psychology, Baltimore: Penguin, 1972.

    Google Scholar 

  69. Tseitlin, S.N., Yazyk i rebenok: Lingvistika detskoi rechi. Uchebnoe posobie dlya studentov vysshikh uchebnykh zavedenii (Language and a Child. Linguistic of Child’s Speech: Manual for Higher Education Institutions), Moscow: Vlados, 2000.

  70. Guillemard, D., Galperina, E., Panasevich, E., et al., EEG-correlates of complex syntactic constructions processing in Russian-speaking children of 5–6 years old, Clin. Pathophysiol., 2016, vol. 22, no. 1, p. 80.

    Google Scholar 

  71. El’konin, D.B., Detskaya psikhologiya: uchebnoe posobie dlya studentov vysshikh uchbenykh zavedenii (Child’s Psychology: Manual for Students of Higher Education Institutions), Moscow: Akademiya, 2004.

  72. Hoff, E. and Shatz, M., Blackwell Handbook of Language Development, Oxford: Blackwell, 2007.

    Google Scholar 

  73. Tseitlin, S.N., Ocherki po slovoobrazovaniyu i formoobrazovaniyu v detskoi rechi (Research Works on Word Formation in Child’s Speech), Moscow: Znak, 2009.

  74. Ostvik, L., Eikeseth, S., and Klintwall, L., Grammatical constructions in typical developing children: effects of explicit reinforcement, automatic reinforcement and parity, Anal. Verbal. Behav., 2012, vol. 28, no. 1, p. 73.

    PubMed  PubMed Central  Google Scholar 

  75. Vasilyeva, M. and Waterfall, H., Beyond syntactic priming: evidence for activation of alternative syntactic structures, J. Child Lang., 2012, vol. 39, no. 2, p. 258.

    PubMed  Google Scholar 

  76. Wright, A.N., The role of modeling and automatic reinforcement in the construction of the passive voice, Anal. Verbal. Behav., 2006, vol. 22, p. 153.

    PubMed  PubMed Central  Google Scholar 

  77. Allen, S.E.M. and Crago, M.B., Early passive acquisition in Inuktitut, J. Child Lang., 1996, vol. 23, no. 1, p. 129.

    CAS  PubMed  Google Scholar 

  78. Demuth, K., Subject, topic and Sesotho passive, J. Child. Lang., 1990, vol. 17, no. 1, p. 67.

    CAS  PubMed  Google Scholar 

  79. Fox, D. and Grodzinsky, Y., Children’s passive: a view from the by-phrase, Ling. Inquiry, 1998, vol. 29, no. 2, p. 311.

    Google Scholar 

  80. Vasilyeva, M., Huttenlocher, J., and Waterfall, H., Effects of language intervention on syntactic skill levels of preschoolers, Dev. Psychol., 2006, vol. 42, no. 1, p. 164.

    PubMed  Google Scholar 

  81. Berman, R.A., The acquisition of Hebrew, in The Crosslinguistic Study of Language Acquisition, Vol. 1: The Data, Slobin, D.I., Ed., Boca Raton: CRC Press, 1985, p. 255.

  82. Vissiennon, K., Friederici, A.D., Brauer, J., et al., Functional organization of the language network in three- and six-year-old children, Neuropsychologia., 2017, vol. 98, p. 24.

    PubMed  PubMed Central  Google Scholar 

  83. Wu, C.Y., Vissiennon, K., Friederici, A.D., et al., Preschoolers’ brains rely on semantic cues prior to the mastery of syntax during sentence comprehension, NeuroImage, 2016, vol. 126, p. 256.

    PubMed  PubMed Central  Google Scholar 

  84. Strotseva-Feinschmidt, A., Schipke, C.S., Gunter, T.C., et al., Young children’s sentence comprehension: neural correlates of syntax-semantic competition, Brain Cognit., 2019, vol. 134, p. 110.

    Google Scholar 

  85. Giedd, J.N., Raznahan, A., Alexander-Bloch, A., et al., Child psychiatry branch of the National Institute of Mental Health longitudinal structural magnetic resonance imaging study of human brain development, Neuropsychopharmacology., 2015, vol. 40, no. 1, p. 43.

    PubMed  Google Scholar 

  86. Tanaka, C., Matsui, M., Uematsu, A., et al., Developmental trajectories of the fronto-temporal lobes from infancy to early adulthood in healthy individuals, sDev. Neurosci., 2012, vol. 34, no. 6, p. 477.

    CAS  Google Scholar 

  87. Courchesne, E., Chisum, H.J., Townsend, J., et al., Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers, Radiology, 2000, vol. 216, no. 3, p. 672.

    CAS  PubMed  Google Scholar 

  88. Taki, Y. and Kawashima, R., Brain development in childhood, Open Neuroimaging J., 2012, vol. 6, p. 103.

    Google Scholar 

  89. Lenroot, R.K. and Giedd, J.N., Brain development in children and adolescents: insights from anatomical magnetic resonance imaging, Neurosci. Biobehav. Rev., 2006, vol. 30, no. 6, p. 718.

    PubMed  Google Scholar 

  90. Shaw, P., Kabani, N.J., Lerch, J.P., et al., Neurodevelopmental trajectories of the human cerebral cortex, J. Neurosci., 2008, vol. 28, no. 14, p. 3586.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Sowell, E.R., Peterson, B.S., Kan, E., et al., Sex differences in cortical thickness mapped in 176 healthy individuals between 7 and 87 years of age, Cereb. Cortex, 2007, vol. 17, no. 7, p. 1550.

    PubMed  Google Scholar 

  92. Weiss-Croft, L.J. and Baldeweg, T., Maturation of language networks in children: A systematic review of 22 years of functional MRI, NeuroImage, 2015, vol. 123. P. 269.

    PubMed  Google Scholar 

  93. Skeide, M.A., Brauer, J., and Friederici, A.D., Syntax gradually segregates from semantics in the developing brain, NeuroImage, 2014, vol. 100, p. 106.

    PubMed  Google Scholar 

  94. Brauer J., Anwander A., and Friederici A., Neuroanatomical prerequisites for language functions in the maturing brain, Cereb. Cortex, 2011, vol. 21, no. 2, p. 459.

    PubMed  Google Scholar 

  95. Judaš, M. and Cepanec, M., Adult structure and development of the human fronto-opercular cerebral cortex (Broca’s region), Clin. Linguist. Phonetics, 2007, vol. 21, nos. 11–12, p. 975.

    Google Scholar 

  96. Imperati, D., Colcombe, S., Kelly, C., et al., Differential development of human brain white matter tracts, PLoS One., 2011, vol. 6, no. 8, p. e23 437.

    Google Scholar 

  97. Lebel, C. and Beaulieu, C., Longitudinal development of human brain wiring continues from childhood into adulthood, J. Neurosci., 2011, vol. 31, no. 30, p. 10 937.

    Google Scholar 

  98. Dubois, J., Hertz-Pannier, L., Dehaene-Lambertz, G., et al., Assessment of the early organization and maturation of infants’ cerebral white matter fiber bundles: A feasibility study using quantitative diffusion tensor imaging and tractography, NeuroImage, 2006, vol. 30, no. 4, p. 1121.

    CAS  PubMed  Google Scholar 

  99. Perani, D., Saccuman, M.C., Scifo, P., et al., Neural language networks at birth, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, no. 38, p. 16 056.

    Google Scholar 

  100. Brauer, J., Anwander, A., Perani, D., et al., Dorsal and ventral pathways in language development, Brain Lang., 2013, vol. 127, no. 2, p. 289.

    PubMed  Google Scholar 

  101. Eluvathingal, T.J., Hasan, K.M., Kramer, L., et al., Quantitative diffusion tensor tractography of association and projection fibers in normally developing children and adolescents, Cereb. Cortex, 2007, vol. 17, no. 12, p. 2760.

    PubMed  PubMed Central  Google Scholar 

  102. Xiao, Y., Friederici, A.D., Margulies, D.S., et al., Development of a selective left-hemispheric fronto-temporal network for processing syntactic complexity in language comprehension, Neuropsychologia., 2016, vol. 83, p. 274.

    PubMed  PubMed Central  Google Scholar 

  103. Xiao, Y., Friederici, A.D., Margulies, D.S., et al., Longitudinal changes in resting-state fMRI from age 5 to age 6 years covary with language development, NeuroImage, 2016, vol. 128, p. 116.

    PubMed  PubMed Central  Google Scholar 

  104. Friederici, A.D., Brauer, J., and Lohmann, G., Maturation of the language network: from inter- to intrahemispheric connectivities, PLoS One, 2011, vol. 6, no. 6, p. e20 726.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to O.V. Kruchinina for help in manuscript preparation.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. A 19-013-00923).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Stankova.

Ethics declarations

Conflict of interest. The authors declare that they have no real or potential conflict of interest.

This article does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stankova, E.P., Guillemard, D.M. & Galperina, E.I. Morpho-Functional Basis of Complex Sentence Processing in Adults and Children. Hum Physiol 46, 332–342 (2020). https://doi.org/10.1134/S0362119720030135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119720030135

Keywords:

Navigation