Skip to main content
Log in

Changes in the α rhythm upon introduction of Go/NoGo stimuli in the context of an experiment with a set to an angry face

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

In the middle of a 16-s pause between the target (facial image) and a triggering stimuli, conditioning Go/NoGo signals were presented to healthy adults (n = 35). The absence of significant changes in the plasticity of a set to an angry face upon introduction of an additional cognitive task is due to an increase in induced synchronization of the α rhythm in the pauses between target, conditioning, and triggering stimuli. This indicates an increase in the top-down inhibitory control, which suppresses the effects of irrelevant factors, and, thereby, facilitates processing relevant information. In the time interval between the NoGo and triggering stimuli, the induced synchronization of low-frequency and high-frequency α rhythm is recorded locally in the motor area of the left hemisphere only (C 3, FC 3). The theory on the inhibitory nature of this electrophysiological phenomenon is experimentally confirmed. The concepts of differentiating and delayed inhibition from the physiology of higher nervous activity are considered as part of the theory of top-down inhibitory control from the prefrontal cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kostandov, E.A., Cheremushkin, E.A., Yakovenko, I.A., and Petrenko, N.E., The differences in the induced synchronization of the α rhythm in the pauses between visual stimuli in cases of different plasticity of a cognitive set, Zh. Vyssh. Nervn. Deyat. im. I. P. Pavlova, 2013, vol. 63, no. 6, p. 675.

    Google Scholar 

  2. Klimesch, W., Alpha-band oscillations, attention, and controlled access to stored information, Trends Cogn. Sci., 2012, vol. 16, no. 12, p. 606.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Klimesch, W., Evoked alpha and early access to the knowledge system: the P1 inhibition timing hypothesis, Brain Res., 2011, vol. 1408, p. 52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Klimesch, W., Sauseng, P., and Hanslmayr, S., EEG alpha oscillations: the inhibition-timing hypothesis, Brain Res., 2007, vol. 53, no. 1, p. 63.

    Article  Google Scholar 

  5. Sauseng, P., Gerloff, Ch., and Hummel, F.C., Two brakes are better than one: the neural bases of inhibitory control of motor memory traces, Neuroimage, 2013, vol. 65, p. 52.

    Article  PubMed  Google Scholar 

  6. Sauseng, P., Brain oscillations: phase-locked EEG alpha controls perception, Current Biol., 2012, vol. 22, no. 9, p. 306.

    Article  Google Scholar 

  7. Kostandov, E.A. and Cheremushkin, E.A., Psychophysiological signs of high flexible forms of set on the emotionally negative facial expression, Zh. Vysshei Nervn. Deyat. im. I.P. Pavlova, 2013, vol. 63, no. 2, p. 175.

    CAS  Google Scholar 

  8. Capotosto, P., Babiloni, C., Romani, G.L., and Corbetta, M., Frontoparietal cortex controls spatial attention through modulation of anticipatory alpha rhythms, J. Neurosci., 2009, vol. 29, p. 5863.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Coull, J.T. and Nobre, A.C., Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and FMRI, J. Neurosci., 2008, vol. 18, p. 7426.

    Google Scholar 

  10. Gazzaley, A. and Nobre, A., Top-down modulation: bridging selective attention and working memory, Trends Cogn. Sci., 2012, vol. 16, no. 2, p. 129.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Kostandov, E.A. and Cheremushkin, E.A., Changes in the low- and high-frequency oscillations of the EEG α-band in the intervals between meaningful visual stimuli, Hum. Physiol., 2013, vol. 39, no. 4, p. 339.

    Article  Google Scholar 

  12. Klimesch, W., EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis, Brain Res. Rev., 1999, vol. 29, nos. 2–3, p. 169.

    Article  CAS  PubMed  Google Scholar 

  13. Kozlov, M.K., Reliability estimates of variation characteristics of pre- and post-stimulus EEG curves by chisquared criterion, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2009, vol. 59, no. 3, p. 373.

    CAS  Google Scholar 

  14. Kostandov, E.A., Effect of context on the plasticity of cognitive activity, Hum. Physiol., 2010, vol. 36, no. 5, p. 510.

    Article  Google Scholar 

  15. Sauseng, P., Feldheim, J.F., Freunberger, R., and Hummel, F.C., Right prefrontal TMS disrupts interregional anticipatory EEG alpha activity during shifting of visuospatial attention, Front. Psychology, 2011, vol. 2, p. 241.

    Article  Google Scholar 

  16. Babiloni, C., Miniussi, C., Babiloni, F., Carducci, F., Cincotti, F., Del Percio, C., Sirello, G., Fracassi, C., Nobre, A.C., Rossini, P.M., Sub-second “temporal attention” modulates alpha rhythms. A high-resolution EEG study, Cogn. Brain Res., 2004, vol. 19, no. 3, p. 259.

    Article  Google Scholar 

  17. D’Esposito, M., From cognitive to neural models of working memory, Phil. Trans. R. Soc., 2007, vol. 362, p. 761.

    Article  Google Scholar 

  18. Ivry, R. and Schlerf, J., Dedicated and intrinsic models of time perception, Trends Cogn. Sci., 2008, vol. 12, p. 273.

    Article  PubMed  Google Scholar 

  19. Miniussi, C., Wilding, E., Coull, J., and Nobre, A., Orienting attention in time: modulation of brain potentials, Brain, 1999, vol. 122, p. 1507.

    Article  PubMed  Google Scholar 

  20. Praamstra, P., Kourtis, D., Kwok, H.F., and Oostenveld, R., Neurophysiology of implicit timing in serial choice reaction-time performance, J. Neurosci., 2006, vol. 26, no. 20, p. 5448.

    Article  CAS  PubMed  Google Scholar 

  21. Buschman, T.J. and Miller, E.K., Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices, Science, 2007, vol. 315, p. 1860.

    Article  CAS  PubMed  Google Scholar 

  22. Yumoto, N., Lu, X., Henry, T.R., et al., Neural correlate of the processing of multi-second time intervals in primate prefrontal cortex, PLoS ONE, 2011, vol. 6, no. 4, e19168.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.A. Kostandov, E.A. Cheremushkin, I.A. Yakovenko, N.E. Petrenko, 2014, published in Fiziologiya Cheloveka, 2014, Vol. 40, No. 1, pp. 13–25.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostandov, E.A., Cheremushkin, E.A., Yakovenko, I.A. et al. Changes in the α rhythm upon introduction of Go/NoGo stimuli in the context of an experiment with a set to an angry face. Hum Physiol 40, 8–19 (2014). https://doi.org/10.1134/S0362119714010083

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119714010083

Keywords

Navigation