Skip to main content
Log in

Cerebral mechanisms of error detection during deceptive responses in the normal state and under the influence of alcohol

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Event-related potentials (ERPs) were studied during deceptive and truthful responses of subjects that were in the normal state or under the influence of alcohol. The psychological task was designed in such a way that the subjects themselves decided whether or not they would tell a lie. Thirteen healthy volunteers participated in the study. An actual deceptive answer was characterized by a higher amplitude of the frontocentral ERP N190 component compared to the ERP accompanying a truthful answer. Alcohol consumption inverted the ratio between the amplitudes of this component in the cases of deceptive and truthful answers (with a higher amplitude in the latter case). The obtained result suggests that a deceptive action activates the so-called cerebral error detector. Under the influence of alcohol, the cerebral error detection system functioned abnormally, so that a deceptive action was not perceived as erroneous. This disturbance of automatic control may account for the lower amplitude of the late positive component of ERPs, which, in our opinion, reflects the process of making a decision on a deceptive response. This may explain why, e.g., alcohol consumption by a driver is hazardous: the activity is mainly controlled by conscious processes (the probability of making “the only right decision” in a critical situation is decreased, reactions become slow, etc.). Thus, the experimental model where the subject consumes a small amount of alcohol may be used for studying the altered functional mode of the cerebral error detector. Such studies seem promising in terms of searching for and developing methods for noninvasive modification of the error detector activity that could be used, e.g., in treatment for obsessions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe, N., Suzuki, M., Tsukiura, T., et al., Dissociable Roles of Prefrontal and Anterior Cingulate Cortices in Deception, Cerebr. Cortex, 2006, vol. 16, p. 192.

    Article  Google Scholar 

  2. Allen, J.J.B. and Iacono, W.G., A Comparison of Methods for the Analysis of Event Related Potentials in Deception Detection, Psychophysiology, 1997, vol. 34, p. 234.

    Article  PubMed  CAS  Google Scholar 

  3. Ganis, G., Kosslyn, S.M., Stose, S., et al., Neural Correlates of Different Types of Deception: An fMRI Investigation, Cerebr. Cortex, 2003, vol. 13, p. 830.

    Article  CAS  Google Scholar 

  4. Johnson, R., Barnhardt, J., and Zhu, J., The Deceptive Response: Effects of Response Conflict and Strategic Monitoring on the Late Positive Component and Episodic Memory-Related Brain Activity, Biol. Psychol., 2003, vol. 64, p. 217.

    Article  PubMed  Google Scholar 

  5. Johnson, R., Barnhardt, J., and Zhu, J., The Contribution of Executive Processes to Deceptive Responding, Neuropsychologia, 2004, vol. 42, p. 878.

    Article  PubMed  Google Scholar 

  6. Johnson, R., Barnhardt, J., and Zhu, J., Differential Effects of Practice on the Executive Processes Used for Truthful and Deceptive Responses: An Event-Related Brain Potential Study, Brain. Res. Cogn., 2005, vol. 24, p. 386.

    Article  Google Scholar 

  7. Johnson, K.A., Kozel, F.A., Laken, S.J., and George, M.S., The Neuroscience of Functional Magnetic Resonance Imaging fMRI for Deception Detection, Am. J. Bioethics, 2007, vol. 7, p. 58.

    Article  Google Scholar 

  8. Kozel, F.A., Padgett, T.M., and George, M.S., A Replication Study of the Neural Correlates of Deception, Behav. Neurosci., 2004, vol. 118, no. 4, p. 852.

    Article  PubMed  Google Scholar 

  9. Langleben, D., Schroeder, L., Maldjian, A., et al., Brain Activity during Simulated Deception: An Event-Related Functional Magnetic Resonance Study, NeuroImage, 2002, vol. 15, p. 727.

    Article  PubMed  CAS  Google Scholar 

  10. Lee, T.M.C., Liu, H.L., Tan, L.H., et al., Lie Detection by Functional Magnetic Resonance Imaging, Hum. Brain Map, 2002, vol. 15, p. 157.

    Article  Google Scholar 

  11. Phan, K.L., Magalhaes, A., and Ziemlewicz, T.J., Neural Correlates of Telling Lies: A Functional Magnetic Resonance Imaging Study at 4 Tesla, Acad. Radiol., 2005, vol. 12, p. 164.

    Article  PubMed  Google Scholar 

  12. Rosenfeld, J.P., Soskins, M., Bosh, G., and Ryan, A., Simple, Effective Countermeasures to P300-Based Tests of Detection of Concealed Information, Psychophysiology, 2004, vol. 41, p. 205.

    Article  PubMed  Google Scholar 

  13. Rosenfeld, J.P., Ellwanger, J.W., Nolan, K., et al., P300 Scalp Amplitude Distribution as an Index of Deception in a Simulated Cognitive Deficit Model, Int. J. Psychophysiol., 1999, vol. 33, p. 3.

    Article  PubMed  CAS  Google Scholar 

  14. Rosenfeld, J.P., Shue, E., and Singer, E., Single Versus Multiple Probe Blocks of P300-based Concealed Information Tests for Self-Referring Versus Incidentally Obtained Information, Biol. Psychol., 2007, vol. 74, p. 396.

    Article  PubMed  CAS  Google Scholar 

  15. Spence, S.A., Farrow, T.F.D., and Herford, A.E., Functional Anatomical Correlates of Deception in Humans, NeuroReport, 2001, vol. 12, p. 2849.

    Article  PubMed  CAS  Google Scholar 

  16. Bechtereva, N.P. and Gretchin, V.B., Physiological Foundations of Mental Activity, Int. Rev. Neurobiol., 1968, vol. 11, p. 239.

    Google Scholar 

  17. Bechtereva, N.P., Neirofiziologicheskie aspekty psikhicheskoi deyatel’nosti cheloveka (Neurophysiological Aspects of Human Mental Activity), Leningrad: Meditsina, 1971.

    Google Scholar 

  18. Bechtereva, N.P., Neirofiziologicheskie aspekty psikhicheskoi deyatel’nosti cheloveka (Neurophysiological Aspects of Human Mental Activity), Leningrad: Meditsina, 1974, 2nd edition.

    Google Scholar 

  19. Bechtereva, N.P., Neurophysiological Aspects of Human Mental Activity, Oxford: University Press, 1978.

    Google Scholar 

  20. Bechtereva, N.P., Kropotov, Yu.D., Ponomarev, V.A., and Etlinger, S.C., In Search of Cerebral Error Detectors, Int. J. Psychophysiol., 1990, vol. 8, p. 261.

    Article  PubMed  CAS  Google Scholar 

  21. Bechtereva, N.P., Medvedev, S.V., and Abdullaev, Y.G., Neuronal Correlate of Mental Error Detection in the Brain Cortex, Biomed. Sci., 1991, vol. 2, p. 301.

    PubMed  CAS  Google Scholar 

  22. Bechtereva, N.P., Gogolitsyn, Yu.P., Kropotov, Yu.D., and Medvedev, S.V., Neirofiziologicheskie osnovy myshleniya (Neurophysiological Mechanisms of Thinking), Leningrad: Nauka, 1985.

    Google Scholar 

  23. Botvinick, M.M., Braver, T.S., Barch, D.M., et al., Conflict Monitoring and Cognitive Control, Psychol. Rev., 2001, vol. 108, p. 624.

    Article  PubMed  CAS  Google Scholar 

  24. Bechtereva, N.P., Shemyakina, N.V., Starchenko, M.G., et al., Error Detection Mechanisms of the Brain: Background and Prospects, Int. J. Psychophysiol., 2005, vol. 58, p. 227.

    Article  PubMed  CAS  Google Scholar 

  25. Carter, C.S., Braver, T.S., Barch, D.M., et al., Anterior Cingulate Cortex, Error Detection, and the Online Monitoring of Performance, Science, 1998, vol. 280, p. 747.

    Article  PubMed  CAS  Google Scholar 

  26. Falkenstein, M., Hoorman, J., Christ, S., and Hohnsbein, J., ERP Components on Reaction Errors and Their Functional Significance: A Tutorial, Biol. Psychol., 2000, vol. 5, p. 187.

    Google Scholar 

  27. Gehring, W.J., Goss, B., Coles, M.G.H., et al., A Neural System for Error Detection and Compensation, Psychol. Sci., 1993, vol. 4, p. 385.

    Article  Google Scholar 

  28. Holroyd, C.B., Nieuwenhuis, S., Yeung, N., et al., Dorsal Anterior Cingulate Cortex Shows fMRI Response to Internal and External Error Signals, Nat. Neurosci., 2004, vol. 7, p. 497.

    Article  PubMed  CAS  Google Scholar 

  29. Holroyd, C.B., Yeung, N., Coles, M.G., and Cohen, J.D., A Mechanism for Error Detection in Speeded Response Time Tasks, J. Exp. Psychol. Gen., 2005, vol. 134, p. 163.

    Article  PubMed  Google Scholar 

  30. Masaki, H., Falkenstein, M., Sturmer, B., et al., Does the Error Negativity Reflect Response Conflict Strength? Evidence from a Simon Task, Psychophysiology, 2007, vol. 44, p. 579.

    Article  PubMed  Google Scholar 

  31. Krigolson, O.E. and Holroyd, C.B., Hierarchical Error Processing: Different Errors, Different Systems, Brain Res., 2007, vol. 155, p. 70.

    Article  CAS  Google Scholar 

  32. Taylor, S.F., Stern, E.R., and Gehring, W.J., Neural Systems for Error Monitoring: Recent Findings and Theoretical Perspectives, Neuroscientist, 2007, vol. 13, p. 160.

    Article  PubMed  Google Scholar 

  33. Vidal, F., Hasbroucq, T., Grapperon, J., and Bonnet, M., Is the ‘error Negativity’ Specific to Error? Biol. Psychol., 2000, vol. 51, p. 109.

    Article  PubMed  CAS  Google Scholar 

  34. Ullsperger, M. and Falkenstein, M., Errors, Conflicts and the Brain: Current Opinions on Performance Monitoring, Leipzig: Max Planck Institute of Cognitive Neuroscience, 2004.

    Google Scholar 

  35. Ullsperger, M. and von Cramon, D.Y., How Does Error Correction Differ from Error Signaling? An Event-Related Potential Study, Brain Res., 2006, vol. 1105, p. 102.

    Article  PubMed  CAS  Google Scholar 

  36. Yeung, N., Cohen, J.D., and Botvinick, M.M., The Neural Basis of Error Detection: Conflict Monitoring and the Error-Related Negativity, Psychol. Rev., 2004, vol. 111, p. 931.

    Article  PubMed  Google Scholar 

  37. Kireev, M.V., Starchenko, M.G., Pakhomov, S.V., and Medvedev, S.V., Stages of the Cerebral Mechanisms of Deceptive Responses, Fiziol. Chel., 2007, vol. 33, no. 6, p. 5 [Hum. Physiol. (Eng. Transl.), 2007, vol. 33, no. 6, p. 659].

    CAS  Google Scholar 

  38. Naatanen R., Alho K. Mismatch Negativity—the Measure for Central Sound Representation Accuracy, Audiol. Neurootol., 1997, vol. 2, p. 341.

    Article  PubMed  CAS  Google Scholar 

  39. Naatanen, R., Gaillard, A.W., and Mantysalo, S., Early Selective-Attention Effect on Evoked Potential Reinterpreted, Acta Psychol., 1978, vol. 42, p. 313.

    Article  CAS  Google Scholar 

  40. Medvedev, S.V., Anichkov, A.D., and Polyakov, Yu.I., Physiological Mechanisms of the Effectiveness of Bilateral Stereotactic Cingulotomy against Strong Psychological Dependence in Drug Addicts, Fiziol. Chel., 2003, vol. 29, no. 4, p. 117 [Hum. Physiol. (Eng. Transl.), 2003, vol. 29, no. 4, p. 492].

    CAS  Google Scholar 

  41. Easdon, C., Izenberg, A., Armilio, M.L., et al., Alcohol Consumption Impairs Stimulus-and Error-Related Processing during a Go/No-Go Task, Cogn. Brain Res., 2005, vol. 25, p. 873.

    Article  CAS  Google Scholar 

  42. Jaaskelainen, I.P., Naatanen, R., and Sillanaukee, P., Effect of Acute Ethanol on Event-Related Potentials: A Review and Reinterpretation, Biol. Psychiatry, 1996, vol. 40, p. 284.

    Article  PubMed  CAS  Google Scholar 

  43. Holroyd, B.C. and Yeung, N., Alcohol and Error Processing, Trends Neurosci., 2003, vol. 26, p. 402.

    Article  PubMed  CAS  Google Scholar 

  44. Ridderinkhof, K.R., Vlugt, Y., Bramlage, A., et al., Alcohol Consumption impairs Detection of Performance Errors in Mediofrontal Cortex, Science., 2002, vol. 298, p. 2209.

    Article  PubMed  CAS  Google Scholar 

  45. Greenhouse, S.W. and Geisser, S., On Methods in the Analysis of Profile Data, Psychometrika, 1959, vol. 24, p. 95.

    Article  Google Scholar 

  46. Fillmore, M.T. and Vogel-Sprott, M., Response Inhibition under Alcohol: Effects of Cognitive and Motivational Conflict, J. Stud. Alcohol, 2000, vol. 61, p. 239.

    PubMed  CAS  Google Scholar 

  47. Marczinski, C.A. and Fillmore, M.T., Compensating for Alcohol-Induced Impairment of Control: Effects on Inhibition and Activation of Behavior, Psychopharmacology, 2005, vol. 181, p. 337.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M.V. Kireev, S.V. Pakhomov, S.V. Medvedev, 2008, published in Fiziologiya Cheloveka, 2008, Vol. 34, No. 2, pp. 13–22.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kireev, M.V., Pakhomov, S.V. & Medvedev, S.V. Cerebral mechanisms of error detection during deceptive responses in the normal state and under the influence of alcohol. Hum Physiol 34, 141–149 (2008). https://doi.org/10.1134/S0362119708020023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119708020023

Keywords

Navigation