Skip to main content
Log in

On Algebraic Dependence of Cosmological Parameters

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We consider the inverse function of the scale factor \(a(t)\) of the Friedmann equations, discussing also the asymptotics of cosmological parameters under various assumptions on the \(\Lambda\)CDM model. Using algebraic dependencies between the cosmological parameters and the representation of the inverse function of the scale factor \(a(t)\) as an elliptic integral with a parameter, we compute in a uniform way some special events in the universe’s evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Ž. Mijajlović and D. Branković, “Algebraic dependencies and representations of cosmological parameters,” Publ. Astron. Obs. Belgrade 100, 295–300 (2021).

    ADS  Google Scholar 

  2. A. Friedmann, “Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes,” Z. Physik 21, 326–332 (1924).

    Article  ADS  MATH  Google Scholar 

  3. Planck Collaboration: N. Aghanim, Y. Akrami, M. Ashdown et al., “Planck 2018 results. VI. Cosmological parameters.,” Astron. Astrophys. 641, A6 (2020).

    Article  Google Scholar 

  4. D. Benisty and D. Staicova, “Testing late-time cosmic acceleration with uncorrelated baryon acoustic oscillation dataset,” Astron. Astrophys. 647, A38 (2021).

    Article  ADS  Google Scholar 

  5. J. P. Hu, F. Y. Wang, and Z. G. Dai, “Measuring cosmological parameters with a luminosity-time correlation of gamma-ray bursts,” Mon. Not. R. Astron. Soc. 507, 730–742 (2021).

    Article  ADS  Google Scholar 

  6. ESA Science and Technology, Measurements of the Hubble constant, 1 September 2019. https://sci.esa.int/web/planck/-/60504-measurements-of-the-hubble-constant, accessed 27 July 2022.

  7. A. G. Riess et al., “Large Magellanic Cloud cepheid standards provide a 1% foundation for the determination of the Hubble constant and stronger evidence for physics beyond \(\Lambda\)CDM,” Astroph. J. 876, 85 (2019).

    Article  ADS  Google Scholar 

  8. D. Weinberg, “Astronomy 5682: Introduction to cosmology, Spring 2019,” April 11, 2019. https://www.astronomy.ohio-state.edu/weinberg.21/A5682/index.html, accessed 27 July 2022.

  9. A. Liddle, An Introduction to Modern Cosmology (2nd ed., Wiley, 2003).

    Google Scholar 

  10. A. R. Liddle and D. H. Lyth, Cosmological Inflation and Large-Scale Structure (Cambridge Univ. Press, New York, 2000).

    Book  MATH  Google Scholar 

  11. B. Ryden, Introduction to cosmology (2nd ed., Cambridge Univ. Press, Cambridge, 2016).

    Book  Google Scholar 

  12. R. L. Workman et al. (Particle Data Group), to be published in Prog. Theor. Exp. Phys. 2022, 083C01 (2022).

  13. Hubble site, infographic on Hubble constant, 08 January 2020. https://hubblesite.org/contents/media/images/ 2020/04/4600-Image, accessed 27 July 2022.

  14. A. G. Riess et al., “Observational evidence from Supernovae for an accelerating Universe and a cosmological constant,” Astron. J. 116, 1003–1038 (1998).

    Article  ADS  Google Scholar 

  15. S. Perlmutter at al., “Measurements of \(\Omega\) and \(\Lambda\) from 42 high-redshift supernovae,” Astroph. J. 517, 565–586 (1999).

    Article  ADS  MATH  Google Scholar 

  16. M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).

    Article  ADS  Google Scholar 

  17. J. A. Frieman, M. S. Turner, and D. Huterer, “Dark energy and the accelerating Universe,” Ann. Rev. Astron. Astrophys. 46, 385-432 (2008).

    Article  ADS  Google Scholar 

  18. Supernova Cosmology Project site, April 2010. http://supernova.lbl.gov, accessed 27 July 2022.

  19. Advanced information. NobelPrize.org. Nobel Prize Outreach AB 2022. 27 July 2022. https://www.nobelprize.org/prizes/physics/2011/ advanced-information/, accessed 27 July 2022.

  20. V. Sahni, T. D. Saini, A. A. Starobinsky et al., “Statefinder — A new geometric diagnostic of dark energy,” JETP Lett. 77, 201–206 (2003).

    Article  ADS  Google Scholar 

  21. B. Mishra and S. K. Tripathy, “Investigating the physical and geometrical parameters of the cosmological models with anisotropic background,” Phys. Scr. 95, 095004 (2020).

    Article  ADS  Google Scholar 

  22. S. Bahamonde, C. G. Böhmer, S. Carloni, E. J. Copeland, W. Fang, and N. Tamanini, “Dynamical systems applied to cosmology: Dark energy and modified gravity,” Phys. Rep. 775–777, 1-122 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. M. Hobson, G. Efstathiou, and A. Lasenby, General Relativity: An Introduction for Physicists (Cambridge University Press, Cambridge, 2006).

    Book  MATH  Google Scholar 

  24. J. Perez, A. Füzfa, T. Carletti et al., “The Jungle Universe: coupled cosmological models in a Lotka–Volterra framework,” Gen. Rel. Grav. 46, 1753 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Žarko Mijajlović or Danijela Branković.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mijajlović, Ž., Branković, D. On Algebraic Dependence of Cosmological Parameters. Gravit. Cosmol. 29, 456–467 (2023). https://doi.org/10.1134/S0202289323040163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289323040163

Navigation