Skip to main content
Log in

Graphical Methodology to Study the Corona Onset Voltage for Electrostatic Precipitation of Nanoparticles

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The corona onset voltage is an important operating parameter in the electrostatic precipitation of nanoparticulate, however, its experimental determination depends on the accuracy of the measuring equipment. In this study, a theoretical approach based on the Townsend law was developed to determine the onset voltages and to further investigate the characteristics of an electrostatic precipitator (ESP). The experiments to obtain preliminary data were performed at low air velocities (1.03–4.08 cm/s), varying the number of discharge electrodes from 1 to 4. The theoretical onset voltages agreed with the experimental data and increased with the addition of wires. The ESP could achieve 99% particle charging despite the shielding effect observed in some configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Johnston, H.J., Hutchison, G., Christensen, F.M., Peters, S., Hankin, S., and Stone, V., A review of the in vivo and in vitro toxicity of silver and gold particulates: Particle attributes and biological mechanisms responsible for the observed toxicity, Crit. Rev. Toxicol., 2010, vol. 40, no. 4, pp. 328–346.

    Article  CAS  Google Scholar 

  2. Rabajczyk, A., Zielecka, M., Porowski, R., and Hopke, P.K., Metal nanoparticles in the air: State of the art and future perspectives, Environ. Sci. Nano, 2020, pp. 3233–3254.

  3. Miller, M.R., Raftis, J.B., Langrish, J.P., Mclean, S.G., Samutrtai, P., Connell, S.P., Wilson, S., Vesey, A.T., Fokkens, P.H.B., Boere, A.J.F., Krystek, P., Campbell, C.J., Hadoke, P.W.F., Donaldson, K., Cassee, F.R., Newby, D.E., Du, R., and Mills, N.L., Inhaled nanoparticles accumulate at sites of vascular disease. ACS Nano, 2017, vol. 11, pp. 4542–4552.

    Article  CAS  Google Scholar 

  4. Cottrell, F.G., U.S. Patent 895729, 1908.

  5. Kettleson, E.M., Schriewer, J.M., Buller, R.M.L., and Biswas, P., Soft-X-ray-enhanced electrostatic precipitation for protection against inhalable allergens, ultrafine particles, and microbial infections, Appl. Environ. Microbiol., 2013, vol. 79, no. 4, pp. 1333–1341.

    Article  CAS  Google Scholar 

  6. Poppendieck, D.G., Rim, D., and Persily, A.K., Ultrafine particle removal and ozone generation by in duct electrostatic precipitators, Environ. Sci. Technol., 2014, vol. 48, no. 3, pp. 2067–2074.

    Article  CAS  Google Scholar 

  7. Waring, M.S., Siegel, J.A., and Corsi, R.L., Ultrafine particle removal and generation by portable air cleaners, Atmos. Environ., 2008, vol. 42, no. 20, pp. 5003–5014.

    Article  CAS  Google Scholar 

  8. Kim, H.J., Han, B., Kim, Y.J., Oda, T., and Won, H., Submicrometer particle removal indoors by a novel electrostatic precipitator with high clean air delivery rate, low ozone emissions, and carbon fiber ionizer, Indoor Air, 2013, vol. 23, no. 5, pp. 369–378.

    Article  CAS  Google Scholar 

  9. Parker, K.R., Applied Electrostatic Precipitation, New York: Blackie Academic & Professional, 1997.

    Google Scholar 

  10. Tong, Y., Liu, L., Zhang, L., Bu, S., Chen, F., Shao, W., Feng, C., Xu, W., Qi, S., and Fu, L., Separation of fine particulates using a honeycomb tube electrostatic precipitator equipped with arista electrodes, Sep. Purif. Technol., 2020, vol. 236, Article 116299.

  11. Tong, Y., Zhang, L., Bu, S., Chen, F., Xu, W, Wu, R., Liu, L., and Xu, Y., Multifield modeling of particle dynamics in an electrostatic precipitator equipped with pointed-end arista on corona, Powder Technol., 2020, vol. 362, pp. 680–689.

    Article  CAS  Google Scholar 

  12. Andrade, R.G.S.A. and Guerra, V.G., Discharge electrode influence on electrostatic precipitation of nanoparticles, Powder Technol., 2020, vol. 379, pp. 417–427.

    Article  Google Scholar 

  13. de Oliveira, A.E. and Guerra, V.G., Effect of low gas velocity on the nanoparticle collection performance of an electrostatic precipitator, Sep. Sci. Technol., 2019, vol. 54, no. 7, pp. 1211–1220.

    Article  CAS  Google Scholar 

  14. de Oliveira, A.E. and Guerra, V.G., Influence of particle concentration and residence time on the efficiency of nanoparticulate collection by electrostatic precipitation, J. Electrost., 2018, vol. 96, pp. 1–9.

    Article  CAS  Google Scholar 

  15. de Oliveira, A.E. and Guerra, V.G., Efficiency of electrostatic precipitation of NiO nanoparticles dispersed by atomization, Sep. Sci. Technol., 2020, vol. 55, no. 13, pp. 2400–2409.

    Article  CAS  Google Scholar 

  16. Zhuang, Y., Kim, Y.J., Lee, T.G., and Biswas, P., Experimental and theoretical studies of ultra-fine particle behavior in electrostatic precipitators, J. Electrost., 2000, vol. 48, pp. 72–80.

    Article  Google Scholar 

  17. Kim, H.J., Han, B., Kim, Y.J., and Yoa, S.J., Characteristics of an electrostatic precipitator for submicron particles using non-metallic electrodes and collection plates, J. Aerosol Sci., 2010, vol. 41, pp. 987–997.

    Article  CAS  Google Scholar 

  18. Su, J. and Wen, T. Nanoparticle collection using electrostatic precipitator with spike corona electrodes, in Proceedings of Annual Meeting of the Electrostatics of America, 2017, pp. 2–9.

  19. Ziedan, H., Tlustý, J., Mizuno, A., Sayed, A., and Ahmed, A., Corona current–voltage characteristics in wire-duct electrostatic precipitator, Theory versus experiment, Int. J. Plasma Environ. Sci. Technol., 2010, vol. 4, pp. 154–162.

    Google Scholar 

  20. Ziedan, H., Sayed, A., Mizuno, A., and Ahmed, A., Onset voltage of corona discharge in wire-duct electrostatic precipitators, Int. J. Plasma Environ. Sci. Technol., 2010, vol. 4, pp. 36–44.

    Google Scholar 

  21. Aouimeur, D., Miloua, F., Bengrit, M., Tounsi, F., and Tilmatine, A., Novel electrostatic induction measurement method for monitoring particle flows in an electrostatic precipitator, Part. Sci. Technol., 2020, vol. 38, pp. 89–94.

    Article  CAS  Google Scholar 

  22. Liu, Y.P., You, S.H., Lu, F.C., Wan, Q.F., Bian, X.M., and Wang, L.M., 500-kV EHV bundle conductors’ corona onset voltage calculation and analysis in corona cage at different altitudes, IEEE Trans. Power Deliv., 2012, vol. 27, pp. 2090–2097.

    Article  Google Scholar 

  23. Fadhil, K.F., Pressure and temperature effects on corona onset voltage in electrostatic precipitators, Int. J. Phys. Sci., 2017, vol. 12, pp. 52–59.

    Article  Google Scholar 

  24. Gao, W., Wang, Y., Zhang, H., Guo., B., Zheng, C., Guo, J., and Gao, X.Yu., A numerical investigation of the effect of dust layer on particle migration in an electrostatic precipitator, Aerosol Air Qual. Res., 2020, vol. 20, no. 1, pp. 166–179.

    Article  Google Scholar 

  25. Nouri, H., Said, H.A., Zebboudj, Y., Zouzou, N., and Dascalescu, L., Analysis of electric field and current density in an electrostatic precipitator, IEEE Trans. Dielectr. Electr. Insul., 2016, vol. 23 no. 2, pp. 665–670.

    Article  CAS  Google Scholar 

  26. Yang, D., Guo, B., Ye, X., Yu, A., and Guo, J., Numerical simulation of electrostatic precipitator considering the dust particle space charge, Powder Technol., 2019, vol. 354, pp. 552–560.

    Article  CAS  Google Scholar 

  27. Aissou, M., Said, H.A., Nouri, H., and Zebboudj, Y., Effect of relative humidity on current–voltage characteristics of monopolar DC wire-to-plane system, J. Electrost., 2015, vol. 76, pp. 108–114.

    Article  Google Scholar 

  28. Townsend, J.S., Electricity in Gases, Oxford: Oxford University Press, 1915.

    Book  Google Scholar 

  29. IEEE-DEIS-EHD Technical Committee, Recommended international standard for dimensionless parameters used in electrohydrodynamics, IEEE Trans. Dielectr. Electr. Insul., 2003, vol. 10, pp. 3–6.

    Article  Google Scholar 

  30. Xue, Q.Z. Wen, T.Y., Separating Al2O3 particles from high-speed flue gas by an induced flow recirculation in two-stage electrostatic precipitator, Sep. Purif. Technol., 2020, vol. 234, Article 116105.

  31. Said, H.A., Nouri, H., and Zebboudj, Y., Effect of air flow on corona discharge in wire-to-plate electrostatic precipitator, J. Electrost., 2015, vol. 73, pp. 19–25.

    Article  Google Scholar 

  32. Alonso, M., Martin, M.I., and Alguacil, F.J., The measurement of charging efficiencies and losses of aerosol nanoparticles in a corona charger, J. Electrost., 2006, vol. 64, nos. 3–4, pp. 203–214.

    Article  Google Scholar 

  33. Domat, M., Kruis, F.E., and Fernandez-Diaz, J.M., Investigations of the effect of electrode gap on the performance of a corona charger having separated corona and charging zones, J. Aerosol Sci., 2014, vol. 68, pp. 1–13.

    Article  CAS  Google Scholar 

  34. Hinds, C.W., Aerosol Technology: Properties, Behavior, And Measurement Of Airborne Particles, New York: Wiley, 1998.

    Google Scholar 

  35. Podliński, J., Dekowski, J., Mizeraczyk, J., Brocilo, D., and Chang, J.S., Electrohydrodynamic gas flow in a positive polarity wire-plate electrostatic precipitator and the related dust particle collection efficiency, J. Electrost., 2006, vol. 64, nos. 3–4, pp. 259–262.

    Article  Google Scholar 

  36. Ning, Z., Podlinski, J., Shen, X., Li, S., Wang, S., Han, P., and Yan, K., Electrode geometry optimization in wire-plate electrostatic precipitator and its impact on collection efficiency, J. Electrost., 2016, vol. 80, pp. 76–84.

    Article  Google Scholar 

  37. Świerczok, A. and Jędrusik, M., The collection efficiency of ESP model: Comparison of experimental results and calculations using Deutsch model, J. Electrost., 2018, vol. 91, pp. 41–47.

    Article  Google Scholar 

Download references

Funding

This study was financed by Conselho Nacional de Desenvolvimento Científico e Tecnológico

(CNPq, Finance Code 141299/2019-3, 132829/2018-5) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES, Finance Code 001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. S. A. Andrade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrade, R.G., de Oliveira, A.E. & Guerra, V.G. Graphical Methodology to Study the Corona Onset Voltage for Electrostatic Precipitation of Nanoparticles. Theor Found Chem Eng 56, 504–512 (2022). https://doi.org/10.1134/S0040579522040212

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579522040212

Keywords:

Navigation