Skip to main content
Log in

Simulation of nonlinear liquid oscillations in the pulsation apparatus of variable cross section using a one-dimensional model

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The theoretical description of nonlinear liquid oscillations in pulsation bulk-capacity apparatuses has been considered. A mathematical model of liquid oscillations in a pulsation apparatus of generalized shape with elbows of variable cross sections has been constructed, and the obtained differential equations have been solved by the harmonic balance method and the Fourier expansion of the amplitude of oscillations in the levels of liquid in apparatus elbows. It has been shown that it is necessary to take into account at least four expansion term including the constant one and the phase shift at least of the first-order harmonic to obtain a satisfactory description of liquid oscillations in the considered system. Pronounced fundamental, second- and third-order superharmonic, and 1/2- and 1/3-order subharmonic system oscillations and the possibility of 2/3- and 3/2-order combined-frequency system oscillations have been revealed. The constructed model enables one to calculate the frequency of natural oscillations in pulsation apparatuses, including oscillations with greats amplitude at which their nonlinearity produced by a nonlinear character of the Mendeleev–Clapeyron equation in resilient members cannot be neglected. In combination with the calculated amplitudes of oscillations, this will provide the possibility of determining liquid velocities and passing to the calculations of other hydrodynamic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dolinskii, A.A. and Ivanitskii, G.K., Teplomassoobmen i gidrodinamika v parozhidkostnykh sredakh: teplofizicheskie osnovy diskretno-impul’snogo vvoda energii (Heat and Mass Transfer and Hydrodynamics in Vapor–Liquid Media: Thermophysical Foundations of Discrete Pulsed Energy Input), Kyiv: Naukova Dumka, 2008.

    Google Scholar 

  2. Dolinskii, A.A. and Nakorchevskii, A.I., Principles of optimizing mass transfer technologies based on the discrete- pulsed energy input, Therm. Eng., 1997, vol. 19, no. 6, p. 5.

    CAS  Google Scholar 

  3. Ganiev, R.F. and Lakiza, V.D., On the nonlinear resonance effect of vibrational mixing in a gravitational field, Dokl. Akad. Nauk Ukr. SSR, Ser. A., 1978, no. 5, p. 432.

    Google Scholar 

  4. Ganiev, R.F., Lakiza, V.D., and Tsapenko, A.S., On the effects of vibrational mixing and formation of periodic structures under near-weightlessness conditions, Mekh. Tverd. Tela, 1977, no. 2, p. 56.

    Google Scholar 

  5. Ganiev, R.F. and Ukrainskii, L.E., Dinamika chastits pri vozdeistvii vibratsii (Particle Dynamics under the Action of Vibration), Kiev: Naukova Dumka, 1975.

    Google Scholar 

  6. Ganiev, R.F. and Lapchinskii, V.F., Problemy mekhaniki v kosmicheskoi tekhnologi: upravlyaemye vibratsionnye protsessy v nevesomosti (Problems of Mechanics in Aerospace Engineering: Controllable Vibrational Processes in Weightlessness), Moscow: Mashinostroenie, 1978.

    Google Scholar 

  7. Lyubartovich, S.A., Tret’yakov, O.B., and Ganiev, R.F., Use of wave effects for intensification of chemical and phase transitions in multiphase systems, Teor. Osn. Khim. Tekhnol., 1988, vol. 22, no. 4, p. 560.

    CAS  Google Scholar 

  8. Ganiev, R.F., Volnovye mashiny i tekhnologii (Vvedenie v volnovuyu tekhnologiyu) (Wave Machines and Technologies (Introduction to Wave Engineering)), Moscow: R & C Dynamics, 2008.

    Google Scholar 

  9. Ganiev, R.F., Ukrainskii, L.E., Andreev, V.E., and Kotenev, Yu.A., Problemy i perspektivy volnovoi tekhnologii mnogofaznykh sistem v neftyanoi i gazovoi promyshlennosti (Problems and Prospects of Wave Technology Applied to Multiphase Systems in the Oil and Gas Industry), St. Petersburg: Nedra, 2008.

    Google Scholar 

  10. Ganiev, R.F., Kormilitsyn, V.I., and Ukrainskii, L.E., Volnovaya tekhnologiya prigotovleniya al’ternativnykh vidov topliv i effektivnost' ikh szhiganiya (Wave Technology of Preparation of Alternative Fuels and the Efficiency of Their Burning), Moscow: R & C Dynamics, 2008.

    Google Scholar 

  11. Ostrovskii, G.M. and Abiev, R.Sh., Pulsation resonance equipment for liquid-phase processes, Khim. Prom–st., 1998, no. 8, p. 468.

    Google Scholar 

  12. Ostrovskii, G.M., Malyshev, P.A., and Aksenova, E.G., On the operation of pulsation equipment in the resonance regime, Teor. Osn. Khim. Tekhnol., 1990, vol. 24, no. 6, p. 835.

    CAS  Google Scholar 

  13. Abiev, R.Sh., Aksenova, E.G., and Ostrovskii, G.M., Advances in pulsation resonance equipment for liquidphase systems, Khim. Prom–st., 1994, no. 11, p. 764.

    Google Scholar 

  14. Abiev, R.Sh., Resonance apparatuses for liquid-phase processes, Doctoral (Eng.) Dissertation, St. Petersburg: St. Petersburg State Technol. Inst., 2000.

    Google Scholar 

  15. Abiev, R.Sh., Study of suspension oscillations and mass transfer in a pulsation resonance apparatus, Zh. Prikl. Khim., 1993, vol. 66, no. 10, p. 2236.

    Google Scholar 

  16. Abiev, R.Sh., Determination of rational geometry of elastic elements in U-shaped plant with liquid, Chem. Pet. Eng., 1998, vol. 34, no. 1, p. 12.

    Article  Google Scholar 

  17. Abiev, R.Sh. and Ostrovskii, G.M., Modeling of matter extraction from a capillary porous particle with a bidisperse capillary structure, Theor. Found. Chem. Eng., 2001, vol. 35, no. 3, p. 254.

    Article  CAS  Google Scholar 

  18. Abiev, R.Sh., Ostrovskii, G.M., and Aksenova, E.G., RF Patent 1757698, 1992.

    Google Scholar 

  19. Ostrovskii, G.M., Abiev, R.Sh., and Aksenova, E.G., RF Patent 1813547, 1993.

    Google Scholar 

  20. Ostrovskii, G.M., Abiev, R.Sh., and Aksenova, E.G., RF Patent 2013114, 1994.

    Google Scholar 

  21. Abiev, R.Sh., RF Patent 2187355, 2002.

    Google Scholar 

  22. Abiev, R.Sh. and Galushko, A.S., Hydrodynamics of pulsating flow type apparatus: Simulation and experiments, Chem. Eng. J., 2013, vol. 229, p. 285.

    Article  CAS  Google Scholar 

  23. Harvey, P., Mackley, M.R., and Seliger, T., Process intensification of biodiesel production using a continuous oscillatory flow reactor, J. Chem. Technol. Biotechnol., 2003, vol. 78, p. 338.

    Article  CAS  Google Scholar 

  24. Harvey, A. and Stonestreet, P., A mixing-based design methodology for continuous oscillatory flow reactors, Trans. IChemE, Part A: Chem. Eng. Res. Des., 2002, vol. 80, no. 1, p. 31.

    Article  Google Scholar 

  25. Smith, K.B. and Mackley, M.R., An experimental investigation into the scale-up of oscillatory flow mixing in baffled tubes, Trans. IChemE, Part A.: Chem. Eng. Res. Des., 2006, vol. 84, no. 11, p. 1001.

    Article  CAS  Google Scholar 

  26. Gaidhani, H.K., McNeil, B., and Ni, X., Fermentation of pullulan using an oscillatory baffled fermenter, Trans. IChemE, Part A: Chem. Eng. Res. Des., 2005, vol. 83, no. 6, p. 640.

    Article  CAS  Google Scholar 

  27. Abiev, R.Sh., Teoreticheskie osnovy energo- i resursosberezheniya v khimicheskoi tekhnologii (Theoretical Foundations of Energy and Resource Saving in Chemical Engineering), St. Petersburg: VVM, 2006.

    Google Scholar 

  28. Abiev, R.Sh., Energo- i resursosberegayushchee oborudovanie knimicheskikh tekhnologii: teoreticheskie osnovy i prakticheskoe primenenie v khimicheskoi,neftekhimicheskoi promyshlennosti i biotekhnologiyakh (Energy and Resource Saving in Chemical Technologies: Theoretical Foundations and Practical Application in the Chemical and Petrochemical Industries and Biotechnologies), Saarbrücken, Germany: Lambert Academic, 2012.

    Google Scholar 

  29. Emtsev, B.T., Tekhnicheskaya gidromekhanika (Technical Fluid Mechanics), Moscow: Mashinostroenie, 1987.

    Google Scholar 

  30. Hayashi, Ch., Forced Oscillations in Nonlinear Systems, Osaka: Nippon, 1953.

    Google Scholar 

  31. Timoshenko, S.P., Kolebaniya v inzhenernom dele (Oscillations in Engineering), Moscow: Nauka, 1967.

    Google Scholar 

  32. Vibratsii v tekhnike (Vibration in Engineering), vol. 2: Kolebaniya nelineinykh mekhanicheskikh sistem (Oscillations of Nonlinear Mechanical Systems), Blekhman, I.I., Ed., Moscow: Mashinostroenie, 1979.

  33. Bogolyubov, N.N. and Mitropol’skii, Yu.A., Asimptoticheskie metody v teorii nelineinykh kolebanii (Asymptotic Methods in the Theory of Nonlinear Oscillations), Moscow: Fizmatgiz, 1963.

    Google Scholar 

  34. Kauderer, V.H., Nichtlineare Mechanik, Berlin: Springer, 1958.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sh. Abiev.

Additional information

Original Russian Text © R.Sh. Abiev, 2017, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2017, Vol. 51, No. 1, pp. 58–71.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abiev, R.S. Simulation of nonlinear liquid oscillations in the pulsation apparatus of variable cross section using a one-dimensional model. Theor Found Chem Eng 51, 52–64 (2017). https://doi.org/10.1134/S0040579517010018

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579517010018

Keywords

Navigation