Skip to main content
Log in

Development of a catalytic heating system for external combustion engines

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

A catalytic heater design was proposed for an external combustion engine. This design is based on the partial oxidation or autothermal conversion of hydrocarbon fuel to syngas and its further oxidation with heat generation in a radial catalytic reactor integrated with a tubular heat exchanger. The theoretical analysis of operational regimes for a catalytic heater with a thermal power of 25–50 kW was performed with regard to the distribution of gas and the mathematical modeling of processes in a catalyst bed integrated with a heat exchanger, and some estimates were given for the performance of an external combustion engine. The conditions providing a uniform distribution of gas along the length of a radial reactor with suction of a reaction mixture into the catalyst bed were determined. A design of catalytic heating system elements was developed, and some layout solutions that provide a rational mutual arrangement of system components were created.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Slavin, V.S., Bakos, G.C., and Finnikov, K.A., Conversion of thermal energy into electricity via a water pump operating in Stirling engine cycle, Appl. Energy, 2009, vol. 86, nos. 7–8, pp. 1162–1169.

    Article  Google Scholar 

  2. Puech, P. and Tishkova, V., Thermodynamic analysis of a Stirling engine including regenerator dead volume, Renewable Energy, 2011, vol. 36, no. 2, pp. 872–878.

    Article  Google Scholar 

  3. Kongtragool, B. and Wongwises, S., Thermodynamic analysis of a Stirling engine including dead volumes of hot space, cold space and regenerator, Renewable Energy, 2006, vol. 31, no. 3, pp. 345–359.

    Article  CAS  Google Scholar 

  4. Petrescu, S., Costea, M., Harman, C., and Florea, T., Application of the direct method to irreversible Stirling cycles with finite speed, Int. J. Energy Res., 2002, vol. 26, no. 7, pp. 589–609.

    Article  CAS  Google Scholar 

  5. Kirillov, V.A., Kireenkov, V.V., Kuzin, N.A, Samoilov, A.V., and Shigarov, A.B., Catalytic external combustion engine, Theor. Found. Chem. Eng., 2015, vol. 49, no. 4, pp. 375–387.

    Article  CAS  Google Scholar 

  6. Thombarse, D.G., Stirling engine: Micro-CHP system for residential application, in Encyclopedia of Materials Science and Technology, Amsterdam: Elsevier, 2008.

    Google Scholar 

  7. Alanne, K. and Saari, A., Sustainable small-scale CHP technologies for buildings: The basis for multi-level decision making, Renewable Sustainable Energy Rev., 2004, vol. 8, pp. 401–431.

    Article  CAS  Google Scholar 

  8. Cho, K.S., US Patent 5590526, 1997.

    Google Scholar 

  9. Penswick, L.B. and Erbeznik, R.M., US Patent 5918463, 1999.

    Google Scholar 

  10. Bohn, M.Sand Anselmo, M., US Patent 6183241, 2001.

    Google Scholar 

  11. Clark, D.A. and Lownie, J.R., US Patent 6877315, 2005.

    Google Scholar 

  12. Maceda, J.P., Peeters, R.L., Chen, F.F., Hewitt, R.A. Ito, J.I., Klaas, K.P., Grimes, J.L., and Hestevik, S., US Patent 6513326, 2003.

    Google Scholar 

  13. Langenfeld, C.C., Norris, M., La Rocque, R.K., Smith, S.B. III, and Strimling, J.,, US Patent 6857260, 2005.

    Google Scholar 

  14. Kirillov, V.A., Kuzin, N.A., Kulikov, A.V., Shigarov, A.B., and Sobyanin, V.A., Thermally coupled catalytic reactor for steam reforming of methane and liquid hydrocarbons: Experiment and mathematical modeling, Theor. Found. Chem. Eng., 2003, vol. 37, no. 3, pp. 276–284.

    Article  CAS  Google Scholar 

  15. Hoke, J.L. and SAudia, T.W., US Patent 4354352, 1982.

    Google Scholar 

  16. Roychoudhurry, S., Baird, B.D., Mastanduno, R.T., Crowder, B., and Fazzino, P., US Patent 2351965, 2010.

    Google Scholar 

  17. Walker, G, Stirling Engines, Oxford Clarendon, 1980.

    Google Scholar 

  18. Onovwiona, H.I. and Ugursal, V.I., Residential cogeneration systems: Review of the current technology, Renewable Sustainable Energy Rev., 2006, vol. 10, no. 5, pp. 389–431.

    Article  Google Scholar 

  19. Brizitskii, O.F., Terent’ev, V.Ya., Khristolyubov, A.P., Kirillov, V.A., Kuzin, N.A., Sobyanin, V.A., Kuz’min, V.A., Kireenkov, V.V., and Ermakov, Yu.P., RF Patent 2350839, 2009.

    Google Scholar 

  20. Kirillov, V.A., Kuzin, N.A., Kuz’min, V.A., Skomorokhov, V.B., and Shigarov, A.B., Radial reactorheat exchanger for natural gas combustion in a structured porous metal catalyst bed, Theor. Found. Chem. Eng., 2005, vol. 39, no. 4, pp. 407–414.

    Article  CAS  Google Scholar 

  21. Peretrukhin, S.F., Brizitskii, O.F., Kirillov, V.A., Kuzin, N.A., and Kozlov, S.I., On-board synthesis gas generator for spark-ignition internal combustion engines, Transport Al’tern. Toplive, 2010, no. 5, pp. 68–74

    Google Scholar 

  22. Kirillov, V.A., Kuzin, N.A, Kireenkov, V.V., Amosov, Y.I., Burtsev, V.A., Emel’yanov, V.K., Sobianin, V.A., and Parmon, V.N., Use of syngas as an auto fuel additive: State of the art and prospects, Theor. Found. Chem. Eng., 2011, vol. 45, no. 2, pp. 127–140.

    Article  CAS  Google Scholar 

  23. Kirillov, V.A., Kuzin, N.A., Amosov, Yu.I., Kireenkov, V.V., and Sobyanin, V.A., Catalysts for the conversion of hydrocarbon and synthetic fuels for onboard syngas generators, Catal. Ind., 2011, vol. 3, no. 2, pp. 176–182.

    Article  Google Scholar 

  24. Kirillov, V.A., Shigarov, A.B., Amosov, Yu.I., Belyaev, V.D., and Urusov, A.R., Diesel fuel pre-reforming into methane–hydrogen mixtures, Theor. Found. Chem. Eng., 2015, vol. 49, no. 1, pp. 30–40.

    Article  CAS  Google Scholar 

  25. Kirillov, V.A., Meshcheryakov, V.D., Sobyanin, V.A., Belyaev, V.D., Amosov, Y.I., Kuzin, N.A., and Bobrin, A.S., Bioethanol as a promising fuel for fuel cell power plants, Theor. Found. Chem. Eng., 2008, vol. 42, no. 1, pp. 1–11.

    Article  CAS  Google Scholar 

  26. Kirillov, V.A., Shigarov, A.B., Kuzin, N.A., Kireenkov, V.V., Amosov, Y.I., Samoilov, A.V., and Burtsev, V.A., Thermochemical conversion of fuels into hydrogen-containing gas using recuperative heat of internal combustion engines, Theor. Found. Chem. Eng., 2013, vol. 47, no. 5, pp. 524–537.

    Article  CAS  Google Scholar 

  27. Perry’s Chemical Engineers’ Handbook, Perry, R.H. and Green, D.W., Eds., New York McGraw-Hill, 1999.

  28. Frank-Kamenetskii, D.A, Diffuziya i teploperedacha v khimicheskoi kinetike (Diffusion and Heat Transfer in Chemical Kinetics), Moscow Nauka, 1987.

    Google Scholar 

  29. Mantzaras, J., Catalytic combustion of hydrogen, challenges, and opportunities, in Modeling and Simulation of Heterogeneous Catalytic Processes, Advances in Chemical Engineering, vol. 45, 2014, pp. 97–157.

    Google Scholar 

  30. Hauptmann, W., Votsmeier, M., Vogel, H., and Vlachos, D.G., Modeling the simultaneous oxidation of CO and H2 on Pt—promoting effect of H2 on the COlight-off, Appl. Catal., A, 2011, vol. 397, pp. 174–182.

    Article  CAS  Google Scholar 

  31. Aerov, M.E., Todes, O.M., and Narinskii, D.A, Apparaty so statsionarnym zernistym sloem: Gidravlicheskie i teplovye osnovy raboty (Fixed Granular Bed Apparatuses: Hydraulic and Thermal Foundations of Operation), Leningrad Khimiya, 1979.

    Google Scholar 

  32. Canu, P., Simulation and interpretation of catalytic combustion experimental data, Catal. Today, 2001, vol. 64, pp. 239–252.

    Article  CAS  Google Scholar 

  33. Spravochnik po teploobmennikam (Heat Exchangers: A Handbook), Martynenko, O.G., Ed., Moscow: Energoatomizdat, 1987, vol. 1.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kirillov.

Additional information

Original Russian Text © V.A. Kirillov, A.B. Shigarov, A.V. Samoilov, N.A. Kuzin, V.V. Kireenkov, D.A. Ivanov, 2016, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2016, Vol. 50, No. 1, pp. 3–17.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirillov, V.A., Shigarov, A.B., Samoilov, A.V. et al. Development of a catalytic heating system for external combustion engines. Theor Found Chem Eng 50, 1–14 (2016). https://doi.org/10.1134/S0040579516010097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579516010097

Keywords

Navigation