Skip to main content
Log in

The role of surfactants in the electroflotation extraction of copper, nickel, and zinc hydroxides and phosphates

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The effect of various surfactants on the physicochemical parameters (particle size and zeta potential) of the disperse phase of copper, nickel, and zinc hydroxides at concentrations of cationic, anionic, and nonionic surfactants of 2, 10, 50, and 100 mg/L at pH of 9.5–10.5 was studied. The efficiency of their electroflotation extraction into a flotation froth was determined in a laboratory electroflotation module with antiwear oxide electrodes with efficiency of higher than 95% (initial concentration 50 mg/L, in the form of flotation sludge, processing time no more than 30 min, current density 0.2 A/L).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kolesnikov, V.A., Il’in, V.I., Kapustin, Yu.I., Varaksin, S.O., Kisilenko, P.N., and Kokarev, G.A., Elektroflotatsionnaya tekhnologiya ochistki stochnykh vod promyshlennykh predpriyatii (Electroflotation Technology of Industrial Wastewater Treatment), Moscow: Khimiya, 2007.

    Google Scholar 

  2. Brodskii, V.A., Kolesnikov, V.A., Gubin, A.F., and Il’in, V.I., Mechanism of charge formation on dispersed particles of sparingly soluble metal compounds in water solutions, Khim. Fiz., 2012, vol. 31, no. 10, pp. 46–51.

    CAS  Google Scholar 

  3. Kolesnikov, A.V., Vorob’eva, O.I., and Kapustin, Yu.I., Recovery of heavy metals in the presence of oil emulsion, diesel fuel, and surfactants, Khim. Prom-st. Segodnya, 2009, vol. 17, no. 4, p. 31.

    Google Scholar 

  4. Brodskii, V.A. and Kolesnikov, V.A., Optimization of the electroflotation recovery of low-soluble copper compounds from wastewater by Means of pH Control, Gal’vanotekh. Obrab. Poverkhn., 2011, vol. 19, no. 3, pp. 35–41.

    Google Scholar 

  5. Kharlamova, T.V., Kolesnikov, A.V., Brodsky, V.A., and Kondratieva, E.S., Advanced electrochemical methods of wastewater treatment, Gal’vanotekh. Obrab. Poverkhn., 2013, vol. 21, no. 1, pp. 54–61.

    Google Scholar 

  6. Lange, K.R., Poverkhnostno-aktivnye veshchestva: Sintez, svoistva, analiz, primenenie (Surfactants: Synthesis, Properties, Analysis, and Application), St. Petersburg: Professiya, 2004.

    Google Scholar 

  7. Elaneva, S.I., Physicochemical methods of reducing the corrosiveness of spent electrolytes by converting Cr(VI) into Cr(III), Izv. Penz. Gos. Pedagog. Univ., 2008, no. 6, p. 174.

    Google Scholar 

  8. Kolesnikov, A.V., Vorob’eva, O.I., and Kapustin, Yu.I., Electroflotation purification of wastewater from copper and nickel ions in the presence of surface-active compounds and oil products, Theor. Found. Chem. Eng., 2011, vol. 45, no. 5, pp. 794–799.

    Article  CAS  Google Scholar 

  9. Ozeryanskaya, V.V., Rybalkina, I.S., Filipenko, N.L., and Medvedeva, V.A., Treatment of chromium-containing electroplating wastewater by a combination of chemical and flotation methods, Vestn. Dagestan. Gos. Tekh. Univ., 2011, vol. 11, no. 8.

    Google Scholar 

  10. Sosnitskaya, L.K., Removal of chromium compounds from electroplating wastewater, Mikroelektronika i informatika-2008: 15 Vseross. mezhvuzovskaya konf. studentov i aspirantov (“Microelectronics and Informatics 2008,” 15th All-Russia Students’ and Postgraduates’ Conf.), Moscow, 2008, p. 304.

    Google Scholar 

  11. Jacukowicz-Sobala, I., New methods for removal of chromium from wastewater, Przem. Chem., 2009, vol. 88, no. 1, pp. 51–60.

    CAS  Google Scholar 

  12. Jimenez, C., Talavera, B., Saez, C., Canizares, P., and Rodrigo, M.A., Study of the production of hydrogen bubbles at low current densities for electroflotation processes, J. Chem. Technol. Biotechnol., 2010, vol. 85, no. 10, pp. 1368–1373.

    Article  CAS  Google Scholar 

  13. Matis, K.A. and Peleka, E.N., Alternative flotation techniques for wastewater treatment: focus on electroflotation, Sep. Sci. Technol., 2010, vol. 45, no. 16, pp. 2465–2474.

    Article  CAS  Google Scholar 

  14. Khelifa, A., Moulay, S., and Naceur, A.W., Treatment of metal finishing effluents by the electroflotation technique, Desalination, 2005, vol. 181, nos. 1–3, pp. 27–33.

    Article  CAS  Google Scholar 

  15. Mal’tsev, G.I., Radionov, B.K., and Vershinin, S.V., Kinetic characteristics of concentration and isolation of metal impurities from solutions and industrial wastewater by ion flotation, Theor. Found. Chem. Eng., 2010, vol. 44, no. 6, pp. 853–858.

    Article  Google Scholar 

  16. Sokovnin, O.M. and Zagoskina, N.V., Quantitative determination of the limits of hydrodynamic modes of flotation in rheologically complex media, Theor. Found. Chem. Eng., 2005, vol. 39, no. 3, pp. 329–331.

    Article  CAS  Google Scholar 

  17. Qu, J., Lei, P., and Liu, H., New bipolar electrocoagulation-electroflotation process for the treatment of laundry wastewater, Sep. Purif. Technol., 2004, vol. 36, no. 1, p. 33–39.

    Article  Google Scholar 

  18. Kutepov, A.M., Zolotnikov, A.N., Malyshev, R.M., Kruglik, A.E., and Bomshtein, V.E., Selection of the hydrodynamic conditions of galvanocoagulation on application of low-frequency pulsations to the medium being treated, Theor. Found. Chem. Eng., 2004, vol. 38, no. 4, pp. 448–453.

    Article  CAS  Google Scholar 

  19. Prabir, G., Nath, S.A., and Subhabrata, R., Reduction of COD and removal of Zn+2 from rayon industry wastewater by combined electro-Fenton treatment and chemical precipitation, Desalination, 2011, vol. 266, nos. 1–3, p. 213–217.

    Google Scholar 

  20. Xiao-ru, Y., Jian-zhong, W., Ping, Z., Jin-e, X., and Wei, Z., Comparison of electrochemical methods of phenol-containing waste water treatment, Water Wastewater, 2010, vol. 41, no. 6, p. 41.

    Google Scholar 

  21. Hagans, P.L., Natishan, P.M., Stoner, D.R., and O’Grady, W.E., Electrochemical oxidation of phenol using boron-doped diamond electrodes, J. Electrochem. Soc., 2001, vol. 148, p. E298.

    Article  CAS  Google Scholar 

  22. Aristova, N.A. and Piskarev, I.M., Comparison of oxidative wastewater treatment methods, Theor. Found. Chem. Eng., 2003, vol. 37, no. 2, pp. 179–183.

    Article  CAS  Google Scholar 

  23. Tarasov, V.V., Kruchinina, N.E., Shchedrova, N.I., and Dzamashvili, S.D., Water treatment to remove suspended microscopic drops, Theor. Found. Chem. Eng., 2006, vol. 40, no. 5, pp. 514–518.

    Article  CAS  Google Scholar 

  24. GOST (State Standard) R 52708-2007: Water. Method of Determination of Chemical Oxygen Demand, 2007.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kolesnikov.

Additional information

Original Russian Text © A.V. Kolesnikov, V.V. Kuznetsov, V.A. Kolesnikov, Yu.I. Kapustin, 2015, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2015, Vol. 49, No. 1, pp. 3–11.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnikov, A.V., Kuznetsov, V.V., Kolesnikov, V.A. et al. The role of surfactants in the electroflotation extraction of copper, nickel, and zinc hydroxides and phosphates. Theor Found Chem Eng 49, 1–9 (2015). https://doi.org/10.1134/S0040579515010042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579515010042

Keywords

Navigation