Skip to main content
Log in

On a class of quadratic conservation laws for Newton equations in Euclidean space

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We discuss quadratic conservation laws for the Newton equations and the corresponding second-order Killing tensors in Euclidean space. In this case, the complete set of integrals of motion consists of polynomials of the second, fourth, sixth, and so on degrees in momenta, which can be constructed using the Lax matrix related to the hierarchy of the multicomponent nonlinear Schrödinger equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Agapov and V. Shubin, “Rational integrals of 2-dimensional geodesic flows: new examples,” J. Geom. Phys., 170, 104389, 8 pp. (2021); arXiv: 2106.10645.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Aoki, T. Houri, and K. Tomoda, “Rational first integrals of geodesic equations and generalised hidden symmetries,” Class. Quantum Grav., 33, 195003, 12 pp. (2016); arXiv: 1605.08955.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. J. Hietarinta, “Direct methods for the search of the second invariant,” Phys. Rep., 147, 87–154 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  4. Yu. A. Grigoriev and A. V. Tsiganov, “On superintegrable systems separable in Cartesian coordinates,” Phys. Lett. A, 382, 2092–2096 (2018); arXiv: 1712.07321.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. V. V. Kozlov, “On rational integrals of geodesic flows,” Regul. Chaotic Dyn., 19, 601–606 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. V. V. Kozlov, “Linear systems with quadratic integral and complete integrability of the Schrödinger equation,” Russian Math. Surveys, 74, 959–961 (2019).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. V. V. Kozlov, “Quadratic conservation laws for equations of mathematical physics,” Russian Math. Surveys, 75, 445–494 (2020).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. A. V. Tsiganov, “Superintegrable systems with algebraic and rational integrals of motion,” Theoret. and Math. Phys., 199, 659–674 (2019).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. A. V. Tsiganov, “The Kepler problem: Polynomial algebra of nonpolynomial first integrals,” Regul. Chaotic Dyn., 24, 353–369 (2019); arXiv: 1903.08846.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. A. V. Tsiganov, “Hamiltonization and separation of variables for a Chaplygin ball on a rotating plane,” Regul. Chaotic Dyn., 24, 171–186 (2019).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. J. Haantjes, “On \(X_{m}\)-forming sets of eigenvectors,” Indag. Math., 58, 158–162 (1955).

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Nijenhuis, “\(X_{n-1}\)-forming sets of eigenvectors,” Indag. Math., 54, 200–212 (1951).

    Article  MathSciNet  MATH  Google Scholar 

  13. L. P. Eisenhart, “Separable systems of Stäckel,” Ann. Math., 35, 284–305 (1934).

    Article  MathSciNet  MATH  Google Scholar 

  14. L. P. Eisenhart, “Stäckel systems in conformal Euclidean space,” Ann. Math., 36, 57–70 (1935).

    Article  MathSciNet  MATH  Google Scholar 

  15. T. Levi-Civita, “Sulle trasformazioni delle equazioni dinamiche,” Annali di Matematica, 24, 255–300 (1896).

    Article  MATH  Google Scholar 

  16. S. Benenti, “Separability in Riemannian manifolds,” SIGMA, 12, 013, 21 pp. (2016); arXiv: 1512.07833.

    MathSciNet  MATH  Google Scholar 

  17. E. G. Kalnins and W. Miller, Jr., “Killing tensors and variable separation for Hamilton–Jacobi and Helmholtz equations,” SIAM J. Math. Anal., 11, 1011–1026 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  18. J. T. Horwood, R. G. McLenaghan, and R. G. Smirnov, “Invariant classification of orthogonally separable Hamiltonian systems in Euclidean space,” Commun. Math. Phys., 259, 679–709 (2005); arXiv: math-ph/0605023.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. K. Schöbel and A. P. Veselov, “Separation coordinates, moduli spaces and Stasheff polytopes,” Commun. Math. Phys., 337, 1255–1274 (2015); arXiv: 1307.6132.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. V. S. Matveev and P. J. Topalov, “Integrability in the theory of geodesically equivalent metrics,” J. Phys. A: Math. Gen., 34, 2415–2433 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. M. Walker and R. Penrose, “On quadratic first integrals of the geodesic equations for type \(\{22\}\) spacetimes,” Commun. Math. Phys., 18, 265–274 (1970).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. A. V. Tsiganov, “Killing tensors with nonvanishing Haantjes torsion and integrable systems,” Regul. Chaotic Dyn., 20, 463–475 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. A. V. Tsiganov, “Two integrable systems with integrals of motion of degree four,” Theoret. and Math. Phys., 186, 383–394 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. A. V. Tsiganov, “On integrable systems outside Nijenhuis and Haantjes geometry,” J. Geom. Phys., 178, 104571, 12 pp. (2022); arXiv: 2102.10272.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. V. Tsiganov, “On Killing tensors in three-dimensional Euclidean space,” Theoret. and Math. Phys., 212, 1019–1032 (2022).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. A. Fordy and P. P. Kulish, “Nonlinear Schrödinger equations and simple Lie algebras,” Commun. Math. Phys., 89, 427–443 (1983).

    Article  ADS  MATH  Google Scholar 

  27. A. Fordy, “Derivative nonlinear Schrödinger equations and Hermitian symmetric spaces,” J. Phys. A: Math. Gen., 17, 1235–1245 (1984).

    Article  ADS  MATH  Google Scholar 

  28. A. Fordy, S. Wojciechoski, and I. Marshall, “A family of integrable quartic potentials related to symmetric spaces,” Phys. Lett. A, 113, 395–400 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  29. A. G. Reiman, “Orbit interpretation of Hamiltonian systems of the type of an anharmonic oscillator,” J. Soviet Math., 41, 999–1001 (1988).

    Article  MathSciNet  Google Scholar 

  30. A. M. Perelomov, Integrable Systems of Classical Mechanics and Lie Algebras, Vol. I, Birkhäuser, Basel (1989).

    Google Scholar 

  31. M. A. Ol’shanetskij, M. A. Perelomov, A. G. Reyman, and M. A. Semenov-Tian-Shansky, “Integrable systems. II,” in: Dynamical systems. VII (Encyclopaedia of Mathematical Sciences, Vol. 16, V. I. Arnol’d, S. P. Novikov, and R. V. Gamkrelidze, eds.), Springer, Berlin (1994), pp. 83–259.

    Google Scholar 

  32. A. G.Reyman and M. A. Semenov-Tian-Shansky, Integrable Systems [in Russian], Institute of Computer Studies, Moscow (2003).

    Google Scholar 

  33. V. V. Trofimov and A. T. Fomenko, “Geometric and algebraic mechanisms of the integrability of Hamiltonian systems on homogeneous spaces and Lie algebras,” in: Dynamical systems. VII (Encyclopaedia of Mathematical Sciences, Vol. 16, V. I. Arnol’d, S. P. Novikov, and R. V. Gamkrelidze, eds.), Springer, Berlin (1994), pp. 261–333.

    Google Scholar 

  34. S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces (Graduate Studies in Mathematics, Vol. 34), AMS, Providence, RI (2001).

    MATH  Google Scholar 

  35. P. Deift, L. C. Li, T. Nanda, and C. Tomei, “The Toda flow on a generic orbit is integrable,” Comm. Pure Applied Math., 39, 183–232 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  36. Yu. A. Grigoryev and A. V. Tsiganov, “Symbolic software for separation of variables in the Hamilton–Jacobi equation for the \(L\)-systems,” Regul. Chaotic Dyn., 10, 413–422 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  37. A. Nijenhuis and R. W. Richardson, Jr., “Deformations of Lie algebra structures,” J. Math. Mech., 17, 89–105 (1967).

    MathSciNet  MATH  Google Scholar 

  38. O. I. Bogoyavlenskii, “General algebraic identities for the Nijenhuis and Haantjes tensors,” Izv. Math., 68, 1129–1141 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  39. C. Athorne and A. Fordy, “Generalised KdV and MKdV equations associated with symmetric spaces,” J. Phys. A: Math. Gen., 20, 1377–1386 (1987).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. J. H. Conway and D. A. Smith, On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry, A. K. Peters, Natick, MA (2003).

    Book  MATH  Google Scholar 

  41. P. Lounesto, Clifford Algebras and Spinors (London Mathematical Society Lecture Note Series, Vol. 286), Cambridge Univ. Press, Cambridge (2001).

    Book  MATH  Google Scholar 

  42. H. P. Manning, Geometry of Four Dimensions, Dover, Mineola, NY (1956).

    MATH  Google Scholar 

  43. B. Dorizzi, B. Grammaticos, J. Hietarinta, A. Ramani, and F. Schwarz, “New integrable three-dimensional quartic potentials,” Phys. Lett. A, 116, 432–436 (1986).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

The work is performed under the financial support of the Russian Science Foundation (grant No. 21-11-00141). The second author (E. O. Porubov) thanks the social investment program “Native cities” of the Public corporation “Gazprom Neft” for supporting the Chebyshev Laboratory of St. Petersburg State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Tsiganov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2023, Vol. 216, pp. 350–382 https://doi.org/10.4213/tmf10447.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsiganov, A.V., Porubov, E.O. On a class of quadratic conservation laws for Newton equations in Euclidean space. Theor Math Phys 216, 1209–1237 (2023). https://doi.org/10.1134/S0040577923080111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577923080111

Keywords

Navigation